Discretisation Error Estimator for Transient Dynamic Simulations

Author(s):  
J.Ph. Combe ◽  
P. Ladevèze ◽  
J.P. Pelle

2004 ◽  
Vol 04 (02) ◽  
pp. 259-277
Author(s):  
G. S. PALANI ◽  
NAGESH R. IYER ◽  
T. V. S. R. APPA RAO

This paper presents a posteriori error estimation and h-adaptive refinement techniques for transient dynamic analysis of stiffened plates/shells using the finite element method (FEM). We furnish the formulation of stiffness and mass matrices for finite element (FE) models, QL9S2 and QUAD4S2 for dynamic analysis of plates/shells with arbitrarily-located concentric/eccentric stiffeners. Procedures for computing a posteriori errors for spatial and temporal errors have been presented for transient dynamic problems. An h-adaptive refinement strategy for stiffened plate/shell panels by employing QL9S2 and QUAD4S2 FE models has been discussed. An adaptive time stepping scheme, which is to be used with the time errors for quality control of the time steps, has also been presented. Numerical studies have been conducted to evaluate the efficacy of the error estimators and the adaptive mesh refinement and time stepping algorithm. The spatial error estimator for transient dynamic analysis is found to exhibit monotonic convergence at all time steps. The temporal error estimator for transient dynamic analysis in association with the adaptive time stepping is able to compute more accurate and reliable time steps to keep the time errors within the specified tolerance limits.





2002 ◽  
Vol 33 (7-10) ◽  
pp. 553-563 ◽  
Author(s):  
J.-P Combe ◽  
P Ladevèze ◽  
J.-P Pelle


2003 ◽  
Vol 31 (3) ◽  
pp. 189-202 ◽  
Author(s):  
D. Zheng

Abstract A procedure based on steady state rolling contact Finite Element Analysis (FEM) has been developed to predict tire cross section tread wear profile under specified vehicle driving conditions. This procedure not only considers the tire construction effects, it also includes the effects of materials, vehicle setup, test course, and driver's driving style. In this algorithm, the vehicle driving conditions are represented by the vehicle acceleration histogram. Vehicle dynamic simulations are done to transform the acceleration histogram into tire loading condition distributions for each tire position. Tire weight loss rates for different vehicle accelerations are generated based on a steady state rolling contact simulation algorithm. Combining the weight loss rate and the vehicle acceleration histogram, nine typical tire loading conditions are chosen with different weight factors to represent tire usage conditions. It is discovered that the tire tread wear rate profile is changing continuously as the tire is worn. Simulation of a new tire alone cannot be used to predict the tire cross-section tread wear profile. For this reason, an incremental tread wear simulation procedure is performed to predict the tire cross section tread wear profile. Compared with actual tire cross-section tread wear profiles, good results are obtained from the simulations.



2015 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Nur Farahiah Ibrahim ◽  
Zahari Abu Bakar ◽  
Azlina Idris

Channel estimation techniques for Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) based on comb type pilot arrangement with least-square error (LSE) estimator was investigated with space-time-frequency (STF) diversity implementation. The frequency offset in OFDM effected its performance. This was mitigated with the implementation of the presented inter-carrier interference self-cancellation (ICI-SC) techniques and different space-time subcarrier mapping. STF block coding in the system exploits the spatial, temporal and frequency diversity to improve performance. Estimated channel was fed into a decoder which combined the STF decoding together with the estimated channel coefficients using LSE estimator for equalization. The performance of the system was compared by measuring the symbol error rate with a PSK-16 and PSK-32. The results show that subcarrier mapping together with ICI-SC were able to increase the system performance. Introduction of channel estimation was also able to estimate the channel coefficient at only 5dB difference with a perfectly known channel.



2019 ◽  
Author(s):  
Dimitrios Kolokouris ◽  
Iris Kalenderoglou ◽  
Panagiotis Lagarias ◽  
Antonios Kolocouris

<p>We studied by molecular dynamic (MD) simulations systems including the inward<sub>closed</sub> state of influenza A M2 protein in complex with aminoadamantane drugs in membrane bilayers. We varied the M2 construct and performed MD simulations in M2TM or M2TM with amphipathic helices (M2AH). We also varied the lipid bilayer by changing either the lipid, DMPC or POPC, POPE or POPC/cholesterol (chol), or the lipids buffer size, 10x10 Å<sup>2 </sup>or 20x20 Å<sup>2</sup>. We aimed to suggest optimal system conditions for the computational description of this ion channel and related systems. Measures performed include quantities that are available experimentally and include: (a) the position of ligand, waters and chlorine anion inside the M2 pore, (b) the passage of waters from the outward Val27 gate of M2 S31N in complex with an aminoadamantane-aryl head blocker, (c) M2 orientation, (d) the AHs conformation and structure which is affected from interactions with lipids and chol and is important for membrane curvature and virus budding. In several cases we tested OPLS2005, which is routinely applied to describe drug-protein binding, and CHARMM36 which describes reliably protein conformation. We found that for the description of the ligands position inside the M2 pore, a 10x10 Å<sup>2</sup> lipids buffer in DMPC is needed when M2TM is used but 20x20 Å<sup>2</sup> lipids buffer of the softer POPC; when M2AH is used all 10x10 Å<sup>2</sup> lipid buffers with any of the tested lipids can be used. For the passage of waters at least M2AH with a 10x10 Å<sup>2</sup> lipid buffer is needed. The folding conformation of AHs which is defined from hydrogen bonding interactions with the bilayer and the complex with chol is described well with a 10x10 Å<sup>2</sup> lipids buffer and CHARMM36. </p>





1992 ◽  
Author(s):  
George J. O'Hara ◽  
Patrick F. Cunniff


Sign in / Sign up

Export Citation Format

Share Document