Dynamics of an Innovation Diffusion Model with Time Delay

2017 ◽  
Vol 7 (3) ◽  
pp. 455-481 ◽  
Author(s):  
Rakesh Kumar ◽  
Anuj K. Sharma ◽  
Kulbhushan Agnihotri

AbstractA nonlinear mathematical model for innovation diffusion is proposed. The system of ordinary differential equations incorporates variable external influences (the cumulative density of marketing efforts), variable internal influences (the cumulative density of word of mouth) and a logistically growing human population (the variable potential consumers). The change in population density is due to various demographic processes such as intrinsic growth rate, emigration, death rate etc. Thus the problem involves two dynamic variables viz. a non-adopter population density and an adopter population density. The model is analysed qualitatively using the stability theory of differential equations, with the help of the corresponding characteristic equation of the system. The interior equilibrium point can be stable for all time delays to a critical value, beyond which the system becomes unstable and a Hopf bifurcation occurs at a second critical value. Employing normal form theory and a centre manifold theorem applicable to functional differential equations, we derive some explicit formulas determining the stability, the direction and other properties of the bifurcating periodic solutions. Our numerical simulations show that the system behaviour can become extremely complicated as the time delay increases, with a stable interior equilibrium point leading to a limit cycle with one local maximum and minimum per cycle (Hopf bifurcation), then limit cycles with more local maxima and minima per cycle, and finally chaotic solutions.

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Rakesh Kumar ◽  
Anuj Kumar Sharma

This article is concerned with the diffusion of a sport in a region, and the innovation diffusion model comprising of population classes, viz. nonadopters class, information class and adopters class. A qualitative analysis is carried out to assess the global asymptotic stability of the interior equilibrium for null delay. It has also been proved that the parameter [Formula: see text] (age gaps among sportspersons) in the intra-specific competition between the new players and the senior players can even destabilize the otherwise globally stable interior equilibrium state and the coexistence of all the populations is possible through periodic solutions due to Hopf bifurcation. With the help of normal form theory and center manifold arguments, the stability of bifurcating periodic orbits is determined. Numerical simulations have been executed in support of the analytical findings.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850179 ◽  
Author(s):  
Fengrong Zhang ◽  
Xinhong Zhang ◽  
Yan Li ◽  
Changpin Li

This paper is concerned with a delayed predator–prey model with nonconstant death rate and constant-rate prey harvesting. We mainly study the impact of the time delay on the stability of positive constant solution of delayed differential equations and positive constant equilibrium of delayed diffusive differential equations, respectively. By choosing time delay [Formula: see text] as a bifurcation parameter, we show that Hopf bifurcation can occur as the time delay passes some critical values. In addition, the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, some numerical simulations are carried out to depict our theoretical results.


2018 ◽  
Vol 28 (03) ◽  
pp. 1850042 ◽  
Author(s):  
Xin-You Meng ◽  
Yu-Qian Wu

In this paper, a delayed differential algebraic phytoplankton-zooplankton-fish model with taxation and nonlinear fish harvesting is proposed. In the absence of time delay, the existence of singularity induced bifurcation is discussed by regarding economic interest as bifurcation parameter. A state feedback controller is designed to eliminate singularity induced bifurcation. Based on Liu’s criterion, Hopf bifurcation occurs at the interior equilibrium when taxation is taken as bifurcation parameter and is more than its corresponding critical value. In the presence of time delay, by analyzing the associated characteristic transcendental equation, the interior equilibrium loses local stability when time delay crosses its critical value. What’s more, the direction of Hopf bifurcation and stability of the bifurcating periodic solutions are investigated based on normal form theory and center manifold theorem, and nonlinear state feedback controller is designed to eliminate Hopf bifurcation. Furthermore, Pontryagin’s maximum principle has been used to obtain optimal tax policy to maximize the benefit as well as the conservation of the ecosystem. Finally, some numerical simulations are given to demonstrate our theoretical analysis.


2017 ◽  
Vol 27 (02) ◽  
pp. 1750028 ◽  
Author(s):  
Rui Yuan ◽  
Weihua Jiang ◽  
Yong Wang

This paper investigates a toxic phytoplankton–zooplankton model with Michaelis–Menten type phytoplankton harvesting. The model has rich dynamical behaviors. It undergoes transcritical, saddle-node, fold, Hopf, fold-Hopf and double Hopf bifurcation, when the parameters change and go through some of the critical values, the dynamical properties of the system will change also, such as the stability, equilibrium points and the periodic orbit. We first study the stability of the equilibria, and analyze the critical conditions for the above bifurcations at each equilibrium. In addition, the stability and direction of local Hopf bifurcations, and the completion bifurcation set by calculating the universal unfoldings near the double Hopf bifurcation point are given by the normal form theory and center manifold theorem. We obtained that the stable coexistent equilibrium point and stable periodic orbit alternate regularly when the digestion time delay is within some finite value. That is, we derived the pattern for the occurrence, and disappearance of a stable periodic orbit. Furthermore, we calculated the approximation expression of the critical bifurcation curve using the digestion time delay and the harvesting rate as parameters, and determined a large range in terms of the harvesting rate for the phytoplankton and zooplankton to coexist in a long term.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


2019 ◽  
Vol 29 (04) ◽  
pp. 1950055
Author(s):  
Fengrong Zhang ◽  
Yan Li ◽  
Changpin Li

In this paper, we consider a delayed diffusive predator–prey model with Leslie–Gower term and herd behavior subject to Neumann boundary conditions. We are mainly concerned with the impact of time delay on the stability of this model. First, for delayed differential equations and delayed-diffusive differential equations, the stability of the positive equilibrium and the existence of Hopf bifurcation are investigated respectively. It is observed that when time delay continues to increase and crosses through some critical values, a family of homogeneous and inhomogeneous periodic solutions emerge. Then, the explicit formula for determining the stability and direction of bifurcating periodic solutions are also derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are shown to support the analytical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Wen-bo Zhao ◽  
Xiao-ke Sun ◽  
Huicheng Wang

We drive a scalar delay differential system to model the congestion of a wireless access network setting. The Hopf bifurcation of this system is investigated using the control and bifurcation theory; it is proved that there exists a critical value of delay for the stability. When the delay value passes through the critical value, the system loses its stability and a Hopf bifurcation occurs. Furthermore, the direction and stability of the bifurcating periodic solutions are derived by applying the normal form theory and the center manifold theorem. Finally, some examples and numerical simulations are presented to show the feasibility of the theoretical results.


2011 ◽  
Vol 2011 ◽  
pp. 1-25 ◽  
Author(s):  
N. Bairagi

A SI-type ecoepidemiological model that incorporates reproduction delay of predator is studied. Considering delay as parameter, we investigate the effect of delay on the stability of the coexisting equilibrium. It is observed that there is stability switches, and Hopf bifurcation occurs when the delay crosses some critical value. By applying the normal form theory and the center manifold theorem, the explicit formulae which determine the stability and direction of the bifurcating periodic solutions are determined. Computer simulations have been carried out to illustrate different analytical findings. Results indicate that the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable for the considered parameter values. It is also observed that the quantitative level of abundance of system populations depends crucially on the delay parameter if the reproduction period of predator exceeds the critical value.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050127
Author(s):  
Menghan Chen ◽  
Jinchen Ji ◽  
Haihong Liu ◽  
Fang Yan

The main aim of this paper is to study the oscillatory behaviors of gene expression networks in quorum-sensing system with time delay. The stability of the unique positive equilibrium and the existence of Hopf bifurcation are investigated by choosing the time delay as the bifurcation parameter and by applying the bifurcation theory. The explicit criteria determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are developed based on the normal form theory and the center manifold theorem. Numerical simulations demonstrate good agreements with the theoretical results. Results of this paper indicate that the time delay plays a crucial role in the regulation of the dynamic behaviors of quorum-sensing system.


Sign in / Sign up

Export Citation Format

Share Document