scholarly journals Overview of Chemical-Looping Reduction in Fixed Bed and Fluidized Bed Reactors Focused on Oxygen Carrier Utilization and Reactor Efficiency

2014 ◽  
Vol 14 (2) ◽  
pp. 559-571 ◽  
Author(s):  
Zhiquan Zhou ◽  
Lu Han ◽  
George M. Bollas
2010 ◽  
Vol 33 (12) ◽  
pp. 2021-2028 ◽  
Author(s):  
P. Lan ◽  
Q. Xu ◽  
M. Zhou ◽  
L. Lan ◽  
S. Zhang ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5394
Author(s):  
Anna Zylka ◽  
Jaroslaw Krzywanski ◽  
Tomasz Czakiert ◽  
Kamil Idziak ◽  
Marcin Sosnowski ◽  
...  

This paper presents a 1.5D model of a fluidized bed chemical looping combustion (CLC) built with the use of a comprehensive simulator of fluidized and moving bed equipment (CeSFaMB) simulator. The model is capable of calculating the effect of gas velocity in the fuel reactor on the hydrodynamics of the fluidized bed and the kinetics of the CLC process. Mass of solids in re actors, solid circulating rates, particle residence time, and the number of particle cycles in the air and fuel reactor are considered within the study. Moreover, the presented model calculates essential emissions such as CO2, SOX, NOX, and O2. The model was successfully validated on experimental tests that were carried out on the Fluidized-Bed Chemical-Looping-Combustion of Solid-Fuels unit located at the Institute of Advanced Energy Technologies, Czestochowa University of Technology, Poland. The model’s validation showed that the maximum relative errors between simulations and experiment results do not exceed 10%. The CeSFaMB model is an optimum compromise among simulation accuracy, computational resources, and processing time.


2011 ◽  
Vol 4 ◽  
pp. 433-440 ◽  
Author(s):  
A.R. Bidwe ◽  
F. Mayer ◽  
C. Hawthorne ◽  
A. Charitos ◽  
A. Schuster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document