scholarly journals Interactions between Two Fungi Strains during Litter Decomposition through a Microcosm Experiment: Different Degradative Enzyme Activities

2018 ◽  
Vol 06 (01) ◽  
pp. 1-9 ◽  
Author(s):  
Yan Chen ◽  
Gaozhong Pu ◽  
Bo Lian ◽  
Xiuxia Pei ◽  
Guifang Huang ◽  
...  
Author(s):  
Naoki Makino ◽  
Masahiro Sugano ◽  
Kazuhiro Masutomo ◽  
Tomoji Hata ◽  
Shinji Fushiki

2020 ◽  
Vol 11 ◽  
Author(s):  
Tong Jia ◽  
Yuwen Wang ◽  
Baofeng Chai

Litter decomposition is the key link between material circulation and energy flow in ecosystems, resulting from the activity of resident microbes and various enzymes. This study investigated enzyme activity in litter and associated microbial community characteristics to help clarify the internal mechanisms associated with litter decomposition, while also providing researchers a scientific basis for soil remediation in mining areas. Results confirmed that the nutrient content of Bothriochloa ischaemum litter significantly increased as phytoremediation years progressed, while enzyme activities in litter varied over different phytoremediation years. During the litter decomposition process, cellulase predominated in the early phytoremediation stage and catalase predominated in the intermediate phytoremediation stage. Obvious differences were found in bacterial community structure and diversity over progressive phytoremediation years. Predominant bacterial genera mainly included Massilia, Sphingomonas, Curtobacterium, Amnibacterium, and Methylobacterium. Moreover, Methylorosula and Jatrophihabitans had relatively higher betweenness centrality, and played important roles in bacterial community positive interactions. Additionally, total nitrogen (TN) and total zinc in soil, sucrase and catalase activity in litter were the main environmental factors that affected the structural framework of bacteria in B. ischaemum litter. However, TN had the greatest overall effect on the structural framework of bacteria in litter. Results from this study can help our understanding of the role that litter plays in degraded ecosystems. Our results also provide a scientific basis for improving poor quality soil in areas affected by copper tailings while also amending ecological restoration efficiency.


2019 ◽  
Vol 6 (4) ◽  
pp. 1180-1188 ◽  
Author(s):  
Jingjing Du ◽  
Yuyan Zhang ◽  
Mingxiang Qv ◽  
Ke Li ◽  
Xiaoyun Yin ◽  
...  

An indoor microcosm experiment showed that decomposition rate of poplar leaf litter was significantly and negatively related to ZnO nanoparticle concentration under natural sunlight.


1990 ◽  
Vol 9 (3) ◽  
pp. 383-388 ◽  
Author(s):  
E. Vignon ◽  
A. Martin ◽  
P. Mathieu ◽  
T. Conrozier ◽  
P. Louisot ◽  
...  

2018 ◽  
Vol 16 (1) ◽  
pp. 473-480
Author(s):  
Gaozhong Pu ◽  
Xingjun Tian

AbstractTo better understand the impact of warming on heavy metals (HM) associated with plant litter decomposition in streams, we investigated the impact of high and low HM (Cu and Zn) levels and different water temperatures (10,15 and 20oC) on microbial decomposition of TyphaangustifoliaL.litter and the associated extracellular enzyme activities. During a 100-day incubation, changes in litter mass losses, chemical composition (lignin and total carbohydrate), and extracellular enzyme activity were determined. The decomposition rates were accelerated by the low HM levels at 20oC (0.0051 day–1 at CK vs 0.0061 day–1 at low HM levels). The negative effects of Cu and Zn on Typha litter decomposition were more pronounced at lower temperatures (10 and 15°C). The enhanced enzyme activities of cellulase and β-glucosidase and the higher lignin/litter weight loss and lignin/carbohydrate ratios were found at 20oC and low HM treatment. The enzyme activities of β-glucosidase and cellulase were positively correlated with litter mass losses at 20oC and low HM levels. These results suggest that a 5oC increase in water temperature may attenuate the inhibition of low HM level on litter decomposition.


Sign in / Sign up

Export Citation Format

Share Document