The effects of ZnO nanoparticles on leaf litter decomposition under natural sunlight

2019 ◽  
Vol 6 (4) ◽  
pp. 1180-1188 ◽  
Author(s):  
Jingjing Du ◽  
Yuyan Zhang ◽  
Mingxiang Qv ◽  
Ke Li ◽  
Xiaoyun Yin ◽  
...  

An indoor microcosm experiment showed that decomposition rate of poplar leaf litter was significantly and negatively related to ZnO nanoparticle concentration under natural sunlight.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Slamet Santosa ◽  
Muhamad Ruslan Umar ◽  
Dody Priosambodo ◽  
Rizki Amalia Puji Santosa

Teak Tectona grandis Linn is still used as the main product in the form of wood, while other products, especially environmental services have not received much attention. This study analyzed biomass, carbon stocks and decomposition rate of leaf litter in teak plantations in city forest of Hasanuudin University, Makassar. The individual biomass of teak plants is calculated using the allometric equation, Y=0.11x ρ x D2.62. Carbon stocks were analyzed using a formulation, C=0.47xB. The leaf litter decomposition rate is expressed as the ratio of the remaining litter dry weight, with the formulation, X= (A-B)/A. The number of teak plants in 5 sample plots were 239 trees with an average stem diameter of 20.6cm and an average height of 9.02m. Total biomass in 5 sample plots was 51,712.61g. Carbon stock in 5 sample plots was 24,304.92g. Decomposition rate average of leaf litter of 24.4g during 60 days incubation. The existence of teak plantations is able to reduce CO2 in the atmosphere by as much as 89,199.06gCO2 and resulting in a decomposition rate of teak leaf litter 0.4g per day


2014 ◽  
Vol 955-959 ◽  
pp. 3783-3794
Author(s):  
Yue Qin Song ◽  
Zong Qiang Xie

Leaf litter decomposition is a fundamental mechanism for self-fertilization in forest ecosystems. Decomposition rate is an important factor in this process. Understanding how silvicultural treatments affect leaf litter decomposition rate can aid in plantation management. In order to reveal the effects of silvicultural treatments on litter decomposition in triploid Populus tomentoza pulp plantations, a litterbag technique was employed in a range of experimental conditions: with/without tree canopy cover (inter or intra forest belts), intercropping, and embedment in the soil. The results showed treatments had varying affects on leaf litter decomposition. The micro-environment created by the forest belt had no significant impact on leaf litter decomposition. The rate of decomposition of embedded leaf litter was significantly higher than litter on the soil surface, indicating that litter buried by tillage or hoeing would promote faster decomposition. Leaf litter decomposition was also enhanced by mixing with cotton (Gossypium sp.) leaf, showing that intercropping sped up the nutrient cycle in triploid P. tomentoza pulp plantations, thereby maintaining and improving soil productivity.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2246
Author(s):  
Gbenga Emmanuel Omoniyi ◽  
Benjamin Bergerot ◽  
Laura Pellan ◽  
Maëva Delmotte ◽  
Alain Crave ◽  
...  

Energy derived from leaf litter decomposition fuels food webs in forested streams. However, the natural spatial variability of the decomposition rate of leaf litter and the relative contributions of its drivers are poorly known at the local scale. This study aims to determine the natural in-stream variability of leaf litter decomposition rates in successive riffles and to quantify the factors involved in this key ecosystem process at the local scale. Experiments were conducted on six successive riffles in nine streams in north-western France to monitor the decomposition rate in fine (microbial decomposition, kf) and coarse (total decomposition, kc) mesh bags. We recorded 30 ± 2% (mean ± S.E.) variation in kc among riffles and 43 ± 4% among streams. kf variability was 15 ± 1% among riffles and 20 ± 3% among streams. However, in-stream variability was higher than between-stream variability in four of the nine streams. Streambed roughness was negatively related to decomposition and was the most important factor for both total and microbial decomposition. Our study shows that the natural variability of the decomposition rate resulting from the local morphological conditions of habitats could be very important and should be taken into consideration in studies using leaf litter assays as a bio-indicator of anthropogenic impacts in streams.


2019 ◽  
Vol 20 (6) ◽  
pp. 1343 ◽  
Author(s):  
Gaozhong Pu ◽  
Danjuan Zeng ◽  
Ling Mo ◽  
Jianxiong Liao ◽  
Xiaxia Chen

Artificial light at night (ALAN) is an increasing phenomenon worldwide that can cause a series of biological and ecological effects, yet little is known about its potential interaction with other stressors in aquatic ecosystems. Here, we tested whether the impact of lead (Pb) on litter decomposition was altered by ALAN exposure using an indoor microcosm experiment. The results showed that ALAN exposure alone significantly increased leaf litter decomposition, decreased the lignin content of leaf litter, and altered fungal community composition and structure. The decomposition rate was 51% higher in Pb with ALAN exposure treatments than in Pb without ALAN treatments, resulting in increased microbial biomass, β-glucosidase (β-G) activity, and the enhanced correlation between β-G and litter decomposition rate. These results indicate that the negative effect of Pb on leaf litter decomposition in aquatic ecosystems may be alleviated by ALAN. In addition, ALAN exposure also alters the correlation among fungi associated with leaf litter decomposition. In summary, this study expands our understanding of Pb toxicity on litter decomposition in freshwater ecosystems and highlights the importance of considering ALAN when assessing environmental metal pollutions.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e79994 ◽  
Author(s):  
Nora Künkler ◽  
Roland Brandl ◽  
Martin Brändle

Author(s):  
A. Ibrahima ◽  
S. Kalba Sirzoune ◽  
P. Badakoa ◽  
A. A. Mang A. Menick ◽  
P. Souhore

Few studies on effects of termites on litter decomposition have been done in African savannahs, particularly in the Adamawa savannahs of Cameroon. In the framework of management of resource quality to restore or improve soil fertility of farming systems of Sudano-guinea savannahs of Ngaoundere, Cameroon, study on termites’ control of leaf litter decomposition of eight plant species was conducted on the field. The selected plant species are Bixa orellana, Erythrina sigmoïdea, Ficus polita, Maytenus senegalensis, Mucuna stans, Piliostigma thonningii, Vitex madiensis and Vitellaria paradoxa. Leaf litter samples were incubated in situ using litterbags of 2 mm mesh during 24 weeks in two plots out of canopy, corresponding to two treatments, with and without termites. Experimental design was split-plot with three replications. Collected data was carried out on litter dry mass remaining (LMR). Results showed total mass loss at the end of incubation time (24 weeks) and decomposition rate constants (k) differed significantly among plant species for the two treatments. The values ranged respectively from 23.05% and 0.012 week-1 in V. madiensis to 61.93% of initial dry mass and 0.046 week-1 in P. thonningii for treatment without termites and from 43.88% and 0.022 week-1 in B. orellana to 91.51% and 0.095 week-1 in P. thonningii for treatment with termites. These macro organisms fasted litter decomposition in all plant species, with intensity variation according to species. Litter mass loss and decomposition rate constant (k) correlated with litter thickness, density, area and specific area mass, and these relationships were influenced by the presence of termites. Globally litter decomposition was influenced by termite activities and resource quality. These results contributed to understand litter decomposition process in the sudano-guinea savannahs of Ngaoundere in order improve soil fertility, nutrient cycling and some plant species domestication.


2017 ◽  
Vol 4 (12) ◽  
pp. 2377-2387 ◽  
Author(s):  
Jingjing Du ◽  
Yuyan Zhang ◽  
Minghui Cui ◽  
Jingchao Yang ◽  
Zhongdian Lin ◽  
...  

We investigated the negative effects of ZnO nanoparticles (NPs) on ecosystem function by focusing on the process of leaf litter decomposition in an aquatic ecosystem.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1340
Author(s):  
Md. Khorshed Alam ◽  
Junjiro N. Negishi ◽  
Pongpet Pongsivapai ◽  
Shohei Yamashita ◽  
Tomohiro Nakagawa

Despite the fact that leaf decomposition constitutes an important function in rivers, how multiple environmental stressors simultaneously affect it remains largely unknown. This study investigated the interactive effects of fine sediments (particle size: <2 mm; experimentally manipulated) and a specific nutrient (i.e., nitrate) on subsurface (hyporheic) leaf litter decomposition rate and macroinvertebrates in a gravel-bed river and its tributary in eastern Hokkaido, Japan. The experiment was conducted by measuring leaf litter decomposition of dried Alnus japonica leaves (3 ± 0.05 g) in benthic and hyporheic zones with and without sediment treatments at four sites that had a gradient of nitrate concentration. The decomposition rate was comparable between the two zones but was slowed down by sediment addition in the hyporheic zone. The functional responses were highly predictable for the individual stressors. Detritivore invertebrates were the main driving component of decomposition in the decreased leaf litter decomposition rate under a higher fine sediment condition, whereas higher nitrate accelerated the leaf litter decomposition rate by stimulated microbe-driven decomposition as well as detritivore feeding. Overall, the negative effect of fine sediment could be offset in the presence of nitrate while considering gross functional responses. We demonstrated the additive effects of fine sediment and nitrate on leaf litter decomposition in the hyporheic zone.


Sign in / Sign up

Export Citation Format

Share Document