scholarly journals Nursery Fertilizer Application Increases Rice Growth and Yield in Rainfed Lowlands with or without Post-Transplanting Crop Stress

2015 ◽  
Vol 06 (18) ◽  
pp. 2878-2892 ◽  
Author(s):  
Chhay Ros ◽  
Peter F. White ◽  
Richard W. Bell
Author(s):  
Reina Concepción Medina Litardo ◽  
Sady Javier García Bendezú ◽  
Manuel Danilo Carrillo Zenteno ◽  
Iris Betzaida Pérez-Almeida ◽  
Laura Lucia Parismoreno ◽  
...  

2021 ◽  
Vol 41 (4) ◽  
Author(s):  
Dominique Courault ◽  
Laure Hossard ◽  
Valérie Demarez ◽  
Hélène Dechatre ◽  
Kamran Irfan ◽  
...  

2014 ◽  
Vol 24 (1-2) ◽  
pp. 211-218
Author(s):  
PK Kundu ◽  
TK Acharjee ◽  
MA Mojid

The possibility of using sugar mill’s wastewater/effluent in irrigation was evaluated by investigating the effects of wastewater on growth and yield of wheat (Triticum aestivum cv. Prodip). The experiment was conducted at North Bengal Sugar Mill site in Natore during December 2011 to March 2012. Three irrigation treatments (I1: irrigation with fresh/tubewell water, I2: irrigation with a mixture of fresh and wastewater at 1:1 ratio and I3: irrigation with wastewater) under a main factor and three fertilizer treatments (F0: no application of fertilizer, F1: half dose fertilizer and F2: full dose fertilizer) under a sub factor were evaluated. The experiment was laid out in a split-plot design with three replications of the treatments. Wheat was grown with three irrigations totaling 14 cm applied at 4, 26 and 43 days after sowing (DAS). Important growth and yield data of the crop were recorded. The highest grain yield of 1.829 t/ha was obtained under mixed water irrigation and the lowest grain yield of 1.469 t/ha was obtained under wastewater irrigation. The three irrigation treatments, however, provided statistically similar (p = 0.05) grain yield. For the interaction between irrigation and fertilizers, mixed water irrigation and full dose fertilizer application (I2F2) provided significantly higher grain yield (2.757 t/ha) than all other treatment combinations. The second highest yield, produced under freshwater irrigation and full dose fertilizer (I1F2), was statistically similar to the yield under wastewater irrigation and full dose fertilizer (I3F2). Results of this experiment thus exposed good prospects of irrigating wheat by sugar mills’ wastewater.DOI: http://dx.doi.org/10.3329/pa.v24i1-2.19174 Progress. Agric. 24(1&2): 211 - 218, 2013


2019 ◽  
Vol 13 ((03) 2019) ◽  
pp. 380-385 ◽  
Author(s):  
Soraya Marx Bamberg ◽  
Silvio Junio Ramos ◽  
Marco Aurelio Carbone Carneiro ◽  
José Oswaldo Siqueira

Fertilizer application can enhance the nutritional value of plants, such effects being influenced by the presence of arbuscular mycorrhizal fungi (AMF). Nutrients × AMF interactions are well-known for variety of elements but very little has been addressed on biofortification of selenium (Se) in plants grown in tropical soils. The purpose of this study was to evaluate the effect of Se application and AMF inoculation on growth and micronutrient contents on soybean plants as forage grass. The experiments were conducted in a completely randomized factorial design with five Se doses (0.0, 0.5, 1.0, 2.0 and 3.0 mg kg-1 for soybean plants, and 0.0, 0.5, 1.0, 3.0 and 6.0 mg kg-1 for forage plants), with and without AMF inoculation in three replicates. The results showed that soil Se had only slight effect on soybean growth but it caused a two-fold increase on grain yield. However, the growth of forage grass was enhanced by Se application when AMF was present. The AMF inoculation reduced benefit for soybean growth and yield but marked positive effect on forage grass at high doses of Se. Selenium contents in both plants were increased by its application in soil, being such effect proportional to soil applied doses. Selenium application and AMF inoculation had marked effects on micronutrients contents in both soybean plants and forage grass and they may contribute to Se and micronutrient biofortification.


2007 ◽  
Vol 99 (5) ◽  
pp. 1327-1337 ◽  
Author(s):  
Hiroyuki Shimono ◽  
Toshihiro Hasegawa ◽  
Kazuto Iwama

AGRIFOR ◽  
2018 ◽  
Vol 17 (2) ◽  
pp. 231
Author(s):  
Dian Kristina ◽  
Abdul Rahmi

This experiment aims to: (1) to study of the effect of guano walet fertilizer and Ratu Biogen foliar fertilizeras well as their interaction on the growth and yield of tomato plants; and (2) to find proper dosage of guano walet fertilizer and proper concentration of Ratu Biogen foliar fertilizer for better growth and yield of tomato plants.The research carried out from May 2014 to July 2014, in the Village Melak Ulu RT.20 Subdistrict Melak, West Kutai. It applied Completely Randomized Design with factorial experiment 4 x 4 and five replications.  The first factor is the dosage of the guano walet fertilizer (G) consists of 4 levels, namely: no fertilizer application guano walet (g0), 10 Mg ha ̵ ¹, or 100 g of polybag ̵ ¹ (g1), 15 Mg ha ̵ ¹ or 150 g polibag ̵ ¹ (g2), 20 Mg ha ̵ ¹ or 200 g polybag ̵ ¹   (g3). The second factor is the concentration of Ratu Biogen (B) consists of 4 levels: without POC Ratu Biogen (b0), 1 ml 1 ̵ ¹ water (b1), 2 ml 1 ̵ ¹ water (b2), 3 ml 1 ̵ ¹  water (b3).Result of the research revealed that : (1) application of guano walet fertilizer affect very significantly on plant height at 14, 28, 42 days after planting, the number of fruits per plant, and weight of fruit per plant, but the effect is not significant on the days of plant flowered and days of plant harvest.  The best production is attained by the 200 g polybag-1 fertilizer guano walet (g3), namely 282,50 plant-1, In reverse, the least production is attained by without fertilizer guano walet (g0), namely 227,25 g plant ̵ ¹; (2) application of Ratu Biogen foliar fertilizer after significantly to very significantly on the plant height at 14 days after planting  and the number of fruits per plant, but the effect is no significant on the plant height at 28 and 42 days after planting, days of plant flowered, days of plant harvest, and weight of fruit per plant; and (3) interaction between guano walet fertilizer and Ratu Biogen foliar fertilizer no significantly on the plant height at 14, 28, and 42 days after planting, days of plant flowered, days of plant harvest, number of fruit per plant, and fruit weight per plant.


AGRIFOR ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 81
Author(s):  
Elisabeth Elisabeth ◽  
Puji Astuti

The purpose of the research is to study the effect of bokashi fertilizer and Green Tonik liquid fertilizer and its interaction on the growth and yield of long bean plant, as well as to find the proper dosage of bokashi fertilizer and Green Tonik liquid fertilizer concentration for obtaining the best yield of long bean.The research was conducted using Completely Randomized Design (CRD) in 4 x 4 Factorial Experiment and four replications.  The factor was the dosage of bokashi fertilizer (B) consisting of 4 levels : no bokashi fertilizer application (b0), 100 g/polybag(b1), 200 g/polybag (b2), and 300 g/polybag(b3).   The second factor was the concentration of Green Tonik liquid fertilizer (N) consisting 4 levels : no Green Tonikfertilizer application (n0), 2 ml/ l water (n1),  4 ml/l water (n2), and 6 ml/lwater (n3).The results showed that: (1) the bokashi fertilizer treatment affected significantly on the plant lenght at age 15 days after planting, number of pods and weight of pods per plant, but it did not affect significantly on the plant lenght at age 22, 29 and 36 days after planting, age of plants flowered, and pods lenght; (2)the Green Tonik liquid treatment affected significantly on the plant lenght at age 22, 29, and 60 days after plantingand weight of pods per plant, but it did not affect significantly on the plant lenght at age 15 days after planting, age of plant flowered, and pods lenght;  (3) the interaction treatment between bokashi fertilizer and Green Tonik liquid fertilizer affected significantly on the plant lenght at age 15 days after planting, pods lenght, and weight of pods per plant, but did not affect significantly on the plant lenght at age 22, 29, and 36 after planting, age of plant flowered, and number of pods; and (4) the weighest weight of pods per plant was produced in b2n3 treatment of 401,75 g/plant, while the lighest one was produced in b0n0 treatment of 145,75 g/plant.


Sign in / Sign up

Export Citation Format

Share Document