scholarly journals Photosynthetic Capacities and Productivity of Indoor Hydroponically Grown <i>Brassica alboglabra</i> Bailey under Different Light Sources

2015 ◽  
Vol 06 (04) ◽  
pp. 554-563 ◽  
Author(s):  
Jie He ◽  
Lin Qin ◽  
Yunman Liu ◽  
Tsui Wei Choong
2016 ◽  
Vol 25 (2) ◽  
pp. 77-82 ◽  
Author(s):  
Guang-Jae Lee ◽  
광재 이 ◽  
Jeong-Wook Heo ◽  
Chung-Ryul Jung ◽  
Hyun-Hwan Kim ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Jiaxuan Chen ◽  
Zeyuan Chen ◽  
Zunwen Li ◽  
Yijiao Zhao ◽  
Xiaodong Chen ◽  
...  

To determine the response of Chinese kale (Brassica alboglabra) sprouts to photoperiods under different light sources, we used four photoperiods (0-h light/24-h dark, 8-h light/16-h dark, 12-h light/12-h dark, and 16-h light/8-h dark) to investigate their sprout growth and secondary metabolite glucosinolates (GSs) accumulation under white or combined red-and-blue (RB) light sources. We found that the 16-h light condition under RB light produced plants with the greatest dry matter. Sprouts grown under 16-h RB light condition achieved greater length than those under white light. To investigate the role of RB light in plant growth and GS accumulation, we applied RB light sources with different RB ratios (0:10, 2:8, 5:5, 8:2, and 10:0) to cultivate sprouts. The results showed that significant differential accumulation of GSs existed between sprouts grown under blue (RB, 0:10) and red (RB, 10:0) light; there was greater GS content under blue light. The underlying mechanism of differential GS content in sprouts under red or blue light condition was studied using RNA sequencing technique. Interestingly, abundant GS biosynthetic gene transcripts were observed in sprouts grown under red light compared with under blue light. The expression of β-glucosidase family homolog genes related to GS degradation differed under red and blue light conditions, among those TGG4 homolog was detected with higher expression under red light than with blue light. Taking into consideration, the lower GS accumulation in sprouts under red rather than blue light, we conclude that the degradation of GSs may play a key role in sprouts GS homeostasis.


2016 ◽  
Vol 25 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Guang-Jae Lee ◽  
광재 이 ◽  
Jeong-Wook Heo ◽  
Chung-Ryul Jung ◽  
Hyun-Hwan Kim ◽  
...  

Author(s):  
A. M. Bradshaw

X-ray photoelectron spectroscopy (XPS or ESCA) was not developed by Siegbahn and co-workers as a surface analytical technique, but rather as a general probe of electronic structure and chemical reactivity. The method is based on the phenomenon of photoionisation: The absorption of monochromatic radiation in the target material (free atoms, molecules, solids or liquids) causes electrons to be injected into the vacuum continuum. Pseudo-monochromatic laboratory light sources (e.g. AlKα) have mostly been used hitherto for this excitation; in recent years synchrotron radiation has become increasingly important. A kinetic energy analysis of the so-called photoelectrons gives rise to a spectrum which consists of a series of lines corresponding to each discrete core and valence level of the system. The measured binding energy, EB, given by EB = hv−EK, where EK is the kineticenergy relative to the vacuum level, may be equated with the orbital energy derived from a Hartree-Fock SCF calculation of the system under consideration (Koopmans theorem).


Author(s):  
C.J. Stuart ◽  
B.E. Viani ◽  
J. Walker ◽  
T.H. Levesque

Many techniques of imaging used to characterize petroleum reservoir rocks are applied to dehydrated specimens. In order to directly study behavior of fines in reservoir rock at conditions similar to those found in-situ these materials need to be characterized in a fluid saturated state.Standard light microscopy can be used on wet specimens but depth of field and focus cannot be obtained; by using the Tandem Scanning Confocal Microscope (TSM) images can be produced from thin focused layers with high contrast and resolution. Optical sectioning and extended focus images are then produced with the microscope. The TSM uses reflected light, bulk specimens, and wet samples as opposed to thin section analysis used in standard light microscopy. The TSM also has additional advantages: the high scan speed, the ability to use a variety of light sources to produce real color images, and the simple, small size scanning system. The TSM has frame rates in excess of normal TV rates with many more lines of resolution. This is accomplished by incorporating a method of parallel image scanning and detection. The parallel scanning in the TSM is accomplished by means of multiple apertures in a disk which is positioned in the intermediate image plane of the objective lens. Thousands of apertures are distributed in an annulus, so that as the disk is spun, the specimen is illuminated simultaneously by a large number of scanning beams with uniform illumination. The high frame speeds greatly simplify the task of image recording since any of the normally used devices such as photographic cameras, normal or low light TV cameras, VCR or optical disks can be used without modification. Any frame store device compatible with a standard TV camera may be used to digitize TSM images.


1914 ◽  
Vol 77 (1988supp) ◽  
pp. 82-83
Author(s):  
Herbert E. Ives
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document