brassica alboglabra
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 2)

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 294
Author(s):  
Rui He ◽  
Meifang Gao ◽  
Yamin Li ◽  
Yiting Zhang ◽  
Shiwei Song ◽  
...  

To investigate the effects of supplementary UV-A intensity on growth and antioxidant compounds in Chinese kale (Brassica alboglabra Bailey) baby-leaves, three different UV-A intensity treatments (5, 10, 15 W·m−2, respectively) were applied 10 days before harvest in artificial light plant factory. In Chinese kale baby-leaves, supplemental 5 and 10 W·m−2 UV-A (UVA-5 and UVA-10) were beneficial for inter-node length, stem diameter, canopy diameter, fresh weight and dry weight, particularly in UVA-10 treatment, while these above-mentioned growth parameters all significantly decreased in UVA-15 treatment. The soluble sugar content decreased under UVA-5, but there was no significant difference under UVA-10 and UVA-15. Soluble protein contents decreased under UVA-5 and UVA-10, but significantly increased under UVA-15. UVA-10 played a predominant role in increasing FRAP and contents of total phenolics and total flavonoids compared to other treatments. Contents of total glucosinolates (GLs), aliphatic GLs and indolic GLs in Chinese kale baby-leaves significantly increased with UV-A intensity increasing, and the highest contents were found under UVA-15. The percentage of total aliphatic GLs (about 80%) was significantly higher than those of total indolic GLs. Glucobrassicanapin and sinigrin were two major individual GLs in Chinese kale baby-leaves, variation trends of which were consistent with the contents of total GLs and aliphatic GLs. From the heatmap analysis, and taking economic benefits into account, UVA-10 might be optimal for the production of high-quality Chinese kale baby-leaves in an artificial light plant factory.


Author(s):  
Wichien Sriwichai ◽  
Myriam Collin ◽  
Sylvie Avallone

Abstract. Vegetables rich in vitamin K consumption could prevent bleeding and maintain bone status. The aims of the present work were to investigate i) the effect of household cooking (i.e., boiling for 5 min at 100 °C in distilled water and stir-frying for 3 min at 180 °C in hot canola oil) on phylloquinone bioaccessibility of five rich phylloquinone leafy vegetables, namely Water spinach (Ipomoea aquatic Forssk), Amaranth (Amaranthus blitum subsp. oleraceus L.), Chinese broccoli (Brassica alboglabra), Pak choi (Brassica rapa L.) and Drumstick (Moringa oleifera Lam.), and ii) the structural changes of these leaves before and after in vitro gastro-intestinal digestion. All the experiments were realized in triplicate for each vegetable. The amounts of phylloquinone in leafy vegetables were noticeable in almost all species and ranged from 94 to 182 μg/100 g DM. Their cell wall polysaccharide contents greatly varied from 4.3 to 8.4 g for 100 g. The content in bioaccessible phylloquinone was low in raw leaves (<25 μg/100 g DM) as well as its bioaccessibility (<15%). Leaf pectin content impaired phylloquinone bioaccessibility using principal component analysis. Boiling and stir-frying significantly improved the bioaccessibility of phylloquinone in leaves by a factor of three to twelve and two to seven respectively (p<0.05). These variations were associated with changes in leaf structure. Palisade and spongy cells appeared ruptured and disorganized after stir-frying. Given the estimated bioaccessibility of phylloquinones, the consumption of 500 g of cooked wet leaves per day would cover phylloquinone needs of an individual adult average body weight.


2021 ◽  
Vol 213 ◽  
pp. 112047
Author(s):  
Aqeel Ahmad ◽  
Iqra Shahzadi ◽  
Samavia Mubeen ◽  
Nasim Ahmad Yasin ◽  
Waheed Akram ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 ◽  
Author(s):  
Jiaxuan Chen ◽  
Zeyuan Chen ◽  
Zunwen Li ◽  
Yijiao Zhao ◽  
Xiaodong Chen ◽  
...  

To determine the response of Chinese kale (Brassica alboglabra) sprouts to photoperiods under different light sources, we used four photoperiods (0-h light/24-h dark, 8-h light/16-h dark, 12-h light/12-h dark, and 16-h light/8-h dark) to investigate their sprout growth and secondary metabolite glucosinolates (GSs) accumulation under white or combined red-and-blue (RB) light sources. We found that the 16-h light condition under RB light produced plants with the greatest dry matter. Sprouts grown under 16-h RB light condition achieved greater length than those under white light. To investigate the role of RB light in plant growth and GS accumulation, we applied RB light sources with different RB ratios (0:10, 2:8, 5:5, 8:2, and 10:0) to cultivate sprouts. The results showed that significant differential accumulation of GSs existed between sprouts grown under blue (RB, 0:10) and red (RB, 10:0) light; there was greater GS content under blue light. The underlying mechanism of differential GS content in sprouts under red or blue light condition was studied using RNA sequencing technique. Interestingly, abundant GS biosynthetic gene transcripts were observed in sprouts grown under red light compared with under blue light. The expression of β-glucosidase family homolog genes related to GS degradation differed under red and blue light conditions, among those TGG4 homolog was detected with higher expression under red light than with blue light. Taking into consideration, the lower GS accumulation in sprouts under red rather than blue light, we conclude that the degradation of GSs may play a key role in sprouts GS homeostasis.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 523 ◽  
Author(s):  
Lei Xiang ◽  
Yan-Wen Li ◽  
Zhen-Ru Wang ◽  
Bai-Lin Liu ◽  
Hai-Ming Zhao ◽  
...  

Microcystin-LR (MC-LR) is prevalent in water and can be translocated into soil-crop ecosystem via irrigation, overflow (pollution accident), and cyanobacterial manure applications, threatening agricultural production and human health. However, the effects of various input pathways on the bioaccumulation and toxicity of MCs in terrestrial plants have been hardly reported so far. In the present study, pot experiments were performed to compare the bioaccumulation, toxicity, and health risk of MC-LR as well as its degradation in soils among various treatments with the same total amount of added MC-LR (150 μg/kg). The treatments included irrigation with polluted water (IPW), cultivation with polluted soil (CPS), and application of cyanobacterial manure (ACM). Three common leaf-vegetables in southern China were used in the pot experiments, including Ipomoea batatas L., Brassica juncea L., and Brassica alboglabra L. All leaf vegetables could bioaccumulate MC-LR under the three treatments, with much higher MC-LR bioaccumulation, especially root bioconcentration observed in ACM treatment than IPW and CPS treatments. An opposite trend in MC-LR degradation in soils of these treatments indicated that ACM could limit MC-LR degradation in soils and thus promote its bioaccumulation in the vegetables. MC-LR bioaccumulation could cause toxicity to the vegetables, with the highest toxic effects observed in ACM treatment. Similarly, bioaccumulation of MC-LR in the edible parts of the leaf-vegetables posed 1.1~4.8 fold higher human health risks in ACM treatment than in IPW and CPS treatments. The findings of this study highlighted a great concern on applications of cyanobacterial manure.


Sign in / Sign up

Export Citation Format

Share Document