scholarly journals Simulation of Growth and Leaf Area Index of Quality Protein Maize Varieties in the Southwestern Savannah Region of the DR-Congo

2019 ◽  
Vol 10 (06) ◽  
pp. 976-986
Author(s):  
Jean Pierre Kabongo Tshiabukole ◽  
Roger Kizungu Vumilia ◽  
Gertrude Pongi Khonde ◽  
Jean Claude Lukombo Lukeba ◽  
Amand Mbuya Kankolongo ◽  
...  
2021 ◽  
Vol 4 (4) ◽  
pp. 96-107
Author(s):  
Muhammad Kabir Ladan ◽  
Hassan Adamu Hamidu ◽  
Abdul Bamidele Lawal ◽  
Abdullahi Namakka

ABSTRACT Field trials were conducted in 2016 wet season at Institute of Agricultural Research IAR, Research Farm(Lat.11o 11’ N, Long. 07038’ E, 686m above sea level), Samaru-Zaria and Jaji Military Cantonment Farm located at 30 Km from Zaria along Kaduna – Zaria road (Lat. 10o 49’ 25” N, Long. 07o 34’ 10” E, 600m above sea level), both in Northern Guinea Savannah of Nigeria, to Investigate the growth of Maize varieties and dry matter produced at varying timing of nitrogen second dose fertilization. The treatments consist of three maize varieties (SAMMAZ 14, SAMMAZ 15 and SAMMAZ 16) and six times of nitrogen second dose fertilization 4 5, 6, 7, 8, 9 weeks after sowing (WAS). Treatments were factorially combined and laid out in a randomized complete block design (RCBD) with three replications. SAMMAZ 16 outperformed SAMMAZ 14 and SAMMAZ 15 in terms of plant height, number of leaves, total leaf area, leaf area index and dry matter production. Time of nitrogen second dose application 6 WAS consistently produced the highest growth attributes of maize  ;plant height, number of leaves, total leaf area, leaf area index and dry matter production compared to other timings evaluated. SAMMAZ 16 and 6 WAS in conclusion appeared to be the optimum for increased maize fodder (dry matter) production in the Savannah region where potential for livestock production is high.


Author(s):  
I. Audu ◽  
R. Idris

A field experiment to study the growth and yield stability of maize varieties (Zea mays L.) to different rates of nitrogen fertilizer and cow dung in Mubi Adamawa State, Nigeria was conducted in 2014 and 2015 cropping seasons at the Food and Agricultural Organization/Tree crops Plantation (FAO/TCP) Farm of Faculty of Agriculture, Adamawa State University Mubi. Two maize varieties; viz. Quality Protein Maize (QPM) and Extra Early White (EEW) were selected for sowing. They were assigned to the main plots and nitrogen with cow dung assigned to the subplots in a factorial combination with nitrogen at the rates of 0, 60 and 120 kg N ha-1 and cow dung at 0, 1- and 2-ton ha-1 in split plot design. Data were collected on plant height, leaf area per plant, leaf area index and grain yield per hectare. Data collected were subjected to analysis of variance and treatment means were separated using Duncan Multiple Range Test. The result showed that EEW had the highest plant height (190.77 cm), higher leaf area per plant (535.6 cm2) and leaf area index (0.40 cm) than QPM. The effect of nitrogen fertilizer on the growth and yield parameters increased as the nitrogen fertilizer was increased. 120kg N ha-1 gave the highest plant height (195.68 cm) and grain yield (5658.3 kg). The control plot produced the least; 164.77 cm (plant height) and 2662.50 kg ha-1 (grain yield). Application of 1ton ha-1 cow dung exhibited the highest plant height, (95.00 cm), leaf area per plant (518.91 cm2) and leaf area index (0.37 cm). There was an interaction of variety with nitrogen on plant height and grain yield. High interaction of variety with cow dung on plant height and leaf area per plant was recorded. There was an interaction of nitrogen with cow dung on plant height, leaf area per plant and leaf area index. However, there was an interaction of variety with nitrogen and cow dung on plant height, leaf area per plant and leaf area index. Application of 120 kg N ha-1 significantly increased the yield of QPM maize along with 2-ton ha-1 of cow dung.


Author(s):  
Ndzimandze Sibonginkosi ◽  
Mabuza Mzwandile ◽  
Tana Tamado

Maize is staple food and the most cultivated crop in Eswatini. However, its yield is very low partly due to use of non-optimum plant density for different maturity group maize varieties. Thus, an experiment was conducted at Luyengo, Middleveld of Eswatini during the 2018/2019 cropping season. The experiment consisted of factorial combinations of two varieties [SC 403 (early maturing) and PAN 53 (medium maturing)] and three plant densities (44444 plants/ha, 50000 plants/ha, 57143 plants/ha) in randomised complete block design in three replications. Results showed that medium maturing maize variety PAN 53 had higher leaf area, leaf area index, plant height, cob height (139.4 cm), days to 90% anthesis (69 days), dry biomass, thousand kernels mass (374.0 g), grain yield (43.1 t/ha), and stover mass (59.8 t/ha) than the early maturing variety SC 403. With respect to the effect of plant density, as the plant density increased from 44444 to 57143 plants/ha, leaf area, dry biomass at V12 and R5 growth stages, number of cobs per plant, grain yield, stover mass, and thousand kernels mass (g) were decreased while the leaf area index was increased. The interaction effects of variety and plant density were not significant on all the parameters recorded. Thus, it can be concluded that medium maturing variety PAN 53 and plant density of 44444 plants/ha (90 cm ´ 25 cm) are best options to maximum productivity of maize in the study area. However, it is recommended that the experiment be repeated with inclusion of more varieties and densities to reach at more conclusive recommendation.


2006 ◽  
Vol 46 (3) ◽  
pp. 387 ◽  
Author(s):  
M. M. Muraya ◽  
C. M. Ndirangu ◽  
E. O. Omolo

This study was conducted at Egerton University, Njoro, Kenya for 2 growing seasons, 2001 and 2002. A diallel cross, without reciprocal crossings, involving 7 maize S1 lines: KSTP001, KSTP003, KSTP004, KSTP005, KSTP008, E2 and E3 was used to study the heterosis and inheritance of days to 50% flowering, plant height, ear height, leaf angle, number of leaves per plant, leaf area index, cob length, cob diameter, number of lines per cob, number of seeds per line, 100-grain weight and grain yield. A randomised complete block design with 3 replicates was used. Analysis of variance was conducted on the data generated at 0.05 significant level using MSTAT. The results showed that general combining ability (GCA) and specific combining ability (SCA) was significant (P<0.05) for all traits under study, suggesting existence of both additive and non-additive gene effects for the traits. However, GCA : SCA ratio was >1 for all traits except cob diameter and 100 seed weight, indicating preponderance of additive gene effects for inheritance of these traits. The study identified KSTP003 as the best combiner for most of the traits, while KSTP001 and E3 was the best combination for most traits. KSTP004 and E3 was good combiner for grain yield. Hybrid KSTP005 × E3 was the best cross for grain yield. KSTP003 × E2 was the best cross for reduction of leaf angle thus good source for erectophile canopies in a hybridisation program. Heterosis estimates showed that heterosis was more important in grain yield, yield components, plant height, number of leaves per plant and, leaf area index than other traits studied. Most of traits studied had a positive and significant (P≤0.01), while all traits studied except days to 50% flowering had a positive and significant (P≤0.01) genotypic correlations. It is recommended that based on their combining ability the lines be recombined to form synthetic maize varieties which can be released both as a variety or used for further improvement using recurrent selection. The lines which combine well for reduction in leaf angle from vertical should be utilised to develop erective maize varieties.


2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.


Sign in / Sign up

Export Citation Format

Share Document