scholarly journals A Multinomial Theorem for Hermite Polynomials and Financial Applications

2015 ◽  
Vol 06 (06) ◽  
pp. 1017-1030 ◽  
Author(s):  
Francois Buet-Golfouse
Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


2016 ◽  
Vol 18 (3) ◽  
pp. 77-110
Author(s):  
Francois Buet-Golfouse ◽  
Anthony Owen

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1168
Author(s):  
Cheon Seoung Ryoo ◽  
Jung Yoog Kang

Hermite polynomials are one of the Apell polynomials and various results were found by the researchers. Using Hermit polynomials combined with q-numbers, we derive different types of differential equations and study these equations. From these equations, we investigate some identities and properties of q-Hermite polynomials. We also find the position of the roots of these polynomials under certain conditions and their stacked structures. Furthermore, we locate the roots of various forms of q-Hermite polynomials according to the conditions of q-numbers, and look for values which have approximate roots that are real numbers.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Yiyang Jia ◽  
Jacobus J. M. Verbaarschot

Abstract We analyze the spectral properties of a d-dimensional HyperCubic (HC) lattice model originally introduced by Parisi. The U(1) gauge links of this model give rise to a magnetic flux of constant magnitude ϕ but random orientation through the faces of the hypercube. The HC model, which also can be written as a model of 2d interacting Majorana fermions, has a spectral flow that is reminiscent of Maldacena-Qi (MQ) model, and its spectrum at ϕ = 0, actually coincides with the coupling term of the MQ model. As was already shown by Parisi, at leading order in 1/d, the spectral density of this model is given by the density function of the Q-Hermite polynomials, which is also the spectral density of the double-scaled Sachdev-Ye-Kitaev model. Parisi demonstrated this by mapping the moments of the HC model to Q-weighted sums on chord diagrams. We point out that the subleading moments of the HC model can also be mapped to weighted sums on chord diagrams, in a manner that descends from the leading moments. The HC model has a magnetic inversion symmetry that depends on both the magnitude and the orientation of the magnetic flux through the faces of the hypercube. The spectrum for fixed quantum number of this symmetry exhibits a transition from regular spectra at ϕ = 0 to chaotic spectra with spectral statistics given by the Gaussian Unitary Ensembles (GUE) for larger values of ϕ. For small magnetic flux, the ground state is gapped and is close to a Thermofield Double (TFD) state.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Riccardo Conti ◽  
Davide Masoero

Abstract We study the large momentum limit of the monster potentials of Bazhanov-Lukyanov-Zamolodchikov, which — according to the ODE/IM correspondence — should correspond to excited states of the Quantum KdV model.We prove that the poles of these potentials asymptotically condensate about the complex equilibria of the ground state potential, and we express the leading correction to such asymptotics in terms of the roots of Wronskians of Hermite polynomials.This allows us to associate to each partition of N a unique monster potential with N roots, of which we compute the spectrum. As a consequence, we prove — up to a few mathematical technicalities — that, fixed an integer N , the number of monster potentials with N roots coincides with the number of integer partitions of N , which is the dimension of the level N subspace of the quantum KdV model. In striking accordance with the ODE/IM correspondence.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nusrat Raza ◽  
Umme Zainab ◽  
Serkan Araci ◽  
Ayhan Esi

AbstractIn this paper, we employ an umbral method to reformulate the 3-variable Hermite polynomials and introduce the 4-parameter 3-variable Hermite polynomials. We also obtain some new properties for these polynomials. Moreover, some special cases are discussed and some concluding remarks are also given.


Sign in / Sign up

Export Citation Format

Share Document