scholarly journals Estimation of Building’s Life Cycle Carbon Emissions Based on Life Cycle Assessment and Building Information Modeling: A Case Study of a Hospital Building in China

2019 ◽  
Vol 07 (06) ◽  
pp. 147-165 ◽  
Author(s):  
Kun Lu ◽  
Hongyu Wang
2019 ◽  
Vol 11 (22) ◽  
pp. 6274 ◽  
Author(s):  
Kun Lu ◽  
Xiaoyan Jiang ◽  
Vivian W. Y. Tam ◽  
Mengyun Li ◽  
Hongyu Wang ◽  
...  

Buildings produce a large amount of carbon emissions in their life cycle, which intensifies greenhouse-gas effects and has become a great threat to the survival of humans and other species. Although many previous studies shed light on the calculation of carbon emissions, a systematic analysis framework is still missing. Therefore, this study proposes an analysis framework of carbon emissions based on building information modeling (BIM) and life cycle assessment (LCA), which consists of four steps: (1) defining the boundary of carbon emissions in a life cycle; (2) establishing a carbon emission coefficients database for Chinese buildings and adopting Revit, GTJ2018, and Green Building Studio for inventory analysis; (3) calculating carbon emissions at each stage of the life cycle; and (4) explaining the calculation results of carbon emissions. The framework developed is validated using a case study of a hospital project, which is located in areas in Anhui, China with a hot summer and a cold winter. The results show that the reinforced concrete engineering contributes to the largest proportion of carbon emissions (around 49.64%) in the construction stage, and the HVAC (heating, ventilation, and air conditioning) generates the largest proportion (around 53.63%) in the operational stage. This study provides a practical reference for similar buildings in analogous areas and for additional insights on reducing carbon emissions in the future.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Changhai Peng ◽  
Xiao Wu

Using building information modeling (BIM) and Ecotect, this paper estimated carbon emissions during an office building’s life cycle. This building’s life cycle CO2emissions were divided into three parts: the construction, operation, and demolition stages. Among these, the statistics on the schedule of quantities were generated using BIM, and the energy consumption during the building’s operational stage was obtained using ECOTECT simulation. Sensitivity analysis was performed by changing several alternative parameters, to identify which parameter has more impacts on building performance. The paper demonstrated that (1) BIM and Ecotect are very helpful in estimating carbon emissions from a building’s life cycle, (2) the primary and effective measures to reduce the building’s CO2emissions in hot and humid climate should be arranged as follows: (a) within the limits of comfort, reducing the fresh air volume; (b) extending the indoor temperature range; (c) improving the thermal insulation performance of exterior windows, walls, and roofs; (d) exploiting natural ventilation during transition seasons, and (3) currently there are some limitations in performing LCA based on BIM and Ecotect.


Sign in / Sign up

Export Citation Format

Share Document