scholarly journals Case Study of Carbon Emissions from a Building’s Life Cycle Based on BIM and Ecotect

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Changhai Peng ◽  
Xiao Wu

Using building information modeling (BIM) and Ecotect, this paper estimated carbon emissions during an office building’s life cycle. This building’s life cycle CO2emissions were divided into three parts: the construction, operation, and demolition stages. Among these, the statistics on the schedule of quantities were generated using BIM, and the energy consumption during the building’s operational stage was obtained using ECOTECT simulation. Sensitivity analysis was performed by changing several alternative parameters, to identify which parameter has more impacts on building performance. The paper demonstrated that (1) BIM and Ecotect are very helpful in estimating carbon emissions from a building’s life cycle, (2) the primary and effective measures to reduce the building’s CO2emissions in hot and humid climate should be arranged as follows: (a) within the limits of comfort, reducing the fresh air volume; (b) extending the indoor temperature range; (c) improving the thermal insulation performance of exterior windows, walls, and roofs; (d) exploiting natural ventilation during transition seasons, and (3) currently there are some limitations in performing LCA based on BIM and Ecotect.

2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


2013 ◽  
Vol 2 (4) ◽  
pp. 25-37 ◽  
Author(s):  
Aydin Tabrizi ◽  
Paola Sanguinetti

This case study focuses on the operational performance of a Leadership in Energy & Environmental Design (LEED)-rated building with the application of Building Information Modeling (BIM) to evaluate its capacity to achieve Zero Net Energy (ZNE). Retrofit options for renewable energy implementation are examined in conjunction with scenarios of building operation. In this study, two different BIM processes have been conducted for the energy modeling: object-oriented geometric information modeling (e.g., envelope, doors, windows, walls, zones, etc.) with a BIM tool and energy modeling (e.g., materials, heat resistance, location, weather data, renewables, etc.) with an energy simulation tool. The simulation model is compared to the real building performance and alternative renewable energy scenarios are evaluated. The results are used to make recommendations for the optimization of building performance and consideration of energy-efficient strategies for building performance enhancement. The research points to discontinuities between photovoltaic panel degradation over time and the LEED credit.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4237
Author(s):  
Rosaliya Kurian ◽  
Kishor Sitaram Kulkarni ◽  
Prasanna Venkatesan Ramani ◽  
Chandan Swaroop Meena ◽  
Ashok Kumar ◽  
...  

In recent years Asian Nations showed concern over the Life Cycle Assessment (LCA) of their civil infrastructure. This study presents a contextual investigation of a residential apartment complex in the territory of the southern part of India. The LCA is performed through Building Information Modelling (BIM) software embedded with Environmental Product Declarations (EPDs) of materials utilized in construction, transportation of materials and operational energy use throughout the building lifecycle. The results of the study illustrate that cement is the material that most contributes to carbon emissions among the other materials looked at in this study. The operational stage contributed the highest amount of carbon emissions. This study emphasizes variation in the LCA results based on the selection of a combination of definite software-database combinations and manual-database computations used. For this, three LCA databases were adopted (GaBi database and ecoinvent databases through One Click LCA software), and the ICE database was used for manual calculations. The ICE database showed realistic value comparing the GaBi and ecoinvent databases. The findings of this study are valuable for the policymakers and practitioners to accomplish optimization of Greenhouse Gas (GHG) emissions over the building life cycle.


2020 ◽  
Vol 12 (24) ◽  
pp. 10329
Author(s):  
Ke Xing ◽  
Ki Pyung Kim ◽  
David Ness

While the Circular Economy in the built environment is often viewed in terms of recycling, more value can be obtained from buildings and physical components by their reuse, aided by stewardship and remanufacture, to ensure optimum performance capability. The use of cyber-physical information for online identification, examination and exchange of reusable components may improve their life-cycle management and circularity. To this end, a bi-directional data exchange system is established between physical building components and their virtual Building Information Modeling (BIM) counterparts, so that their life-cycle information—including history of ownership, maintenance record, technical specifications and physical condition—can be tracked, monitored and managed. The resultant prototype Cloud-based BIM platform is then adapted to support an ongoing product-service relationship between suppliers/providers and users/clients. A case study from a major new hospital, focusing upon an example of internal framed glazed systems, is presented for ”proof of concept” and to demonstrate the application of the proposed method. The result of the case study shows that, informed by the life-cycle data from the Cloud-BIM platform, a “lease with reuse” service option is able to deliver a lower total cost and less carbon intensity for each unit of frame-glazed module. This leads to a higher level of eco-efficiency, coupled with decreased consumption of material resources and reduced generation of waste. The research is expected to serve as a step forward in the era of Industry 4.0 and illuminate a more sophisticated way to manage building assets.


2019 ◽  
Vol 11 (22) ◽  
pp. 6274 ◽  
Author(s):  
Kun Lu ◽  
Xiaoyan Jiang ◽  
Vivian W. Y. Tam ◽  
Mengyun Li ◽  
Hongyu Wang ◽  
...  

Buildings produce a large amount of carbon emissions in their life cycle, which intensifies greenhouse-gas effects and has become a great threat to the survival of humans and other species. Although many previous studies shed light on the calculation of carbon emissions, a systematic analysis framework is still missing. Therefore, this study proposes an analysis framework of carbon emissions based on building information modeling (BIM) and life cycle assessment (LCA), which consists of four steps: (1) defining the boundary of carbon emissions in a life cycle; (2) establishing a carbon emission coefficients database for Chinese buildings and adopting Revit, GTJ2018, and Green Building Studio for inventory analysis; (3) calculating carbon emissions at each stage of the life cycle; and (4) explaining the calculation results of carbon emissions. The framework developed is validated using a case study of a hospital project, which is located in areas in Anhui, China with a hot summer and a cold winter. The results show that the reinforced concrete engineering contributes to the largest proportion of carbon emissions (around 49.64%) in the construction stage, and the HVAC (heating, ventilation, and air conditioning) generates the largest proportion (around 53.63%) in the operational stage. This study provides a practical reference for similar buildings in analogous areas and for additional insights on reducing carbon emissions in the future.


Sign in / Sign up

Export Citation Format

Share Document