scholarly journals New Pore Pressure Evaluation Techniques for LAGIA-8 Well, Sinai, Egypt as a Case Study

2016 ◽  
Vol 07 (01) ◽  
pp. 32-46 ◽  
Author(s):  
Ahmed Zakaria Noah
2010 ◽  
Author(s):  
Yuhong Xie ◽  
Jun Cai ◽  
Ling Xia Zhen ◽  
Hong Tian ◽  
Yan Hua Li ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 109-123
Author(s):  
Lisna Syadiah ◽  
Danang Harito Wibowo

This research examines in detail and academically the characteristics of the Paramount Modern Market, then conducts a post-occupational evaluation on the Paramount Modern Market building comprehensively. The object of study was chosen based on its location in the commercial superblock area, market design evolution, and in Gading Serpong commercial area there was an acceleration of economic growth. This study discusses the analysis of the application of the concept of green city in cluster dwellings in Gading Serpong. The method used in this study is a descriptive qualitative method that is carried out with a case study approach, as well as using inductive post-occupational evaluation techniques. The research found are the characteristics of the spatial, technical, and stylistic systems of the Paramount Market building are already efficient, quite in accordance with established rules, and can support trading activities on the market well and efficiently, and then the post-occupatonal evaluation results state that most of the elements in technical, functional and behavioral approaches are efficient and functioning optimally.


2021 ◽  
Author(s):  
André Alonso Fernandes ◽  
Eduardo Schnitzler ◽  
Fabio Fabri ◽  
Leandro Grabarski ◽  
Marcos Vinicius Barreto Malfitani ◽  
...  

Abstract This is a case study of a presalt well that required the use of 3 different MPD techniques to achieve its goals. The well was temporary abandoned when conventional techniques failed to reach the final depth. Total fluid losses in the reservoir section required changing the well design and its completion architecture. The new open hole intelligent completion design had to be used to deliver the selective completion in this challenging scenario. From the hundreds of wells drilled in the Santos basin presalt, there are some wells with tight or no operational drilling window. In order to drill these wells different MPD techniques are used. In most cases, the use of Surface Backpressure (SBP) technique is suitable for drilling the wells to its final depth. For the more complex cases, when higher fluid loss rates occur, the use of SBP and Pressurized Mud Cap Drilling (PMCD) enables the achievement of the drilling and completion objectives. After the temporary abandonment of this specific well in 2018, the uncertainty of the pore pressure could not ensure that the SBP and PMCD techniques would be applicable when reentering the well. To avoid difficult loss control operations, the completion team changed the intelligent completion design to include a separated lower completion, enabling its installation with the MPD system. Besides the previously used MPD techniques, the integrated final project considered an additional technique, Floating Mud Cap Drilling (FMCD), as one of the possible contingencies for the drilling and completion phases. Well reentry and drilling of the remaining reservoir section included the use all the previously mentioned MPD techniques (SBP, PMCD and FMCD). The lower completion deployment utilized the FMCD technique to isolate the formation quickly and efficiently, without damaging the reservoir. The planning and execution of the well faced additional difficulties due to the worldwide pandemic and personnel restrictions. The success from the operation was complete with no safety related events and within the planned budget. At the end, the execution team delivered a highly productive well with an intelligent completion system fully functional, through an integrated and comprehensive approach. MPD use on deepwater wells is relatively new. Different operators used several approaches and MPD techniques to ensure safety and success during wells constructions over the last decade. This paper demonstrates the evolution of MPD techniques usage on deepwater wells.


2020 ◽  
Vol 223 (2) ◽  
pp. 1288-1303
Author(s):  
K Strehlow ◽  
J Gottsmann ◽  
A Rust ◽  
S Hautmann ◽  
B Hemmings

Summary Aquifers are poroelastic bodies that respond to strain by changes in pore pressure. Crustal deformation due to volcanic processes induces pore pressure variations that are mirrored in well water levels. Here, we investigate water level changes in the Belham valley on Montserrat over the course of 2 yr (2004–2006). Using finite element analysis, we simulate crustal deformation due to different volcanic strain sources and the dynamic poroelastic aquifer response. While some additional hydrological drivers cannot be excluded, we suggest that a poroelastic strain response of the aquifer system in the Belham valley is a possible explanation for the observed water level changes. According to our simulations, the shallow Belham aquifer responds to a steadily increasing sediment load due to repeated lahar sedimentation in the valley with rising aquifer pressures. A wholesale dome collapse in May 2006 on the other hand induced dilatational strain and thereby a short-term water level drop in a deeper-seated aquifer, which caused groundwater leakage from the Belham aquifer and thereby induced a delayed water level fall in the wells. The system thus responded to both gradual and rapid transient strain associated with the eruption of Soufrière Hills Volcano (Montserrat). This case study gives field evidence for theoretical predictions on volcanic drivers behind hydrological transients, demonstrating the potential of hydrological data for volcano monitoring. Interrogation of such data can provide valuable constraints on stress evolution in volcanic systems and therefore complement other monitoring systems. The presented models and inferred results are conceptually applicable to volcanic areas worldwide.


2019 ◽  
Vol 19 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Jian Huang ◽  
Theodoor Wouterus Johannes van Asch ◽  
Changming Wang ◽  
Qiao Li

Abstract. Gully-type debris flow induced by high-intensity and short-duration rainfall frequently causes great loss of properties and causalities in mountainous regions of southwest China. In order to reduce the risk by geohazards, early warning systems have been provided. A triggering index can be detected in an early stage by the monitoring of rainfall and the changes in physical properties of the deposited materials along debris flow channels. Based on the method of critical pore pressure for slope stability analysis, this study presents critical pore pressure threshold in combination with rainfall factors for gully-type debris flow early warning. The Wenjia gully, which contains an enormous amount of loose material, was selected as a case study to reveal the relationship between the rainfall and pore pressure by field monitoring data. A three-level early warning system (zero, attention, and warning) is adopted and the corresponding judgement conditions are defined in real time. Based on this threshold, there are several rainfall events in recent years have been validated in Wenjia gully, which prove that such a combined threshold may be a reliable approach for the early warning of gully-type debris flow to safeguard the population in the mountainous areas.


Sign in / Sign up

Export Citation Format

Share Document