scholarly journals Effect of Particle Size and Concentration on Mechanical and Electrical Properties of the Mica Filled PVC

2010 ◽  
Vol 09 (09) ◽  
pp. 831-844 ◽  
Author(s):  
S.P. Deshmukh ◽  
A.C. Rao ◽  
V. R. Gaval ◽  
Seena Joseph ◽  
P.A. Mahanwar
2010 ◽  
Vol 25 (2) ◽  
pp. 391-395 ◽  
Author(s):  
Chien-Neng Liao ◽  
Yen-Chun Huang

SnTe is the most common compound formed at the bismuth telluride/metal soldered junction of thermoelectric modules. It affects the mechanical and electrical properties of the soldered junction. In the study we investigate the growth of SnTe compound during reaction between molten Sn–3.5Ag solder and tellurium at 250 °C. We found that the growth of SnTe is suppressed by Ag–Te bilayer compounds that block further reaction between liquid Sn and Te. With increasing reaction time, the SnTe morphology becomes rough as a result of coarsening of SnTe grains. The growth of SnTe grains follows the conservative ripening kinetics with the mean particle size proportional to one-third power of reaction time.


2014 ◽  
Vol 879 ◽  
pp. 21-26
Author(s):  
Fauzi Ismail ◽  
Mohd Asri Selamat ◽  
Norhamidi Muhamad ◽  
Abu Bakar Sulong ◽  
Nurzirah Abdul Majid

In this study, the effect of sintering temperature on the properties of tungsten-copper (W-Cu) composite produced by liquid phase sintering (LPS) process has been investigated. W-20 wt.% Cu composite powders with particle size less than 1 μm was prepared by cold compaction and followed by cold isostatic pressing. The green specimens were then sintered under nitrogen based atmosphere in the temperature range of 1100°C to 1300°C. The sintering studies were conducted to determine the extent of densification and corresponding to microstructure changes. In addition, the properties of the sintered specimens such as physical appearance, microstructure evolution, mechanical and electrical properties were presented and discussed.


2019 ◽  
Vol 53 (26-27) ◽  
pp. 3861-3874 ◽  
Author(s):  
Vijayakumar M.P ◽  
Lingappa Rangaraj ◽  
Raja S

Titanium aluminium carbide powder was reaction synthesized and used as reinforcement in the aircraft grade epoxy matrix (LY556) to develop a high-performance conductive polymer composite. The particle sizes of 4 and 7 µm were employed from 0 to 40 wt.% to improve the mechanical and electrical properties of conductive polymer composites. It was observed that the percolation characteristics were exhibited at a critical threshold of 20 wt.% for both the filler particle sizes. Further, microstructural observations revealed the formation of a conductive network in the conductive polymer composites when the filler content was 20 wt.%. The tensile and flexural properties were increased when the particle size was decreased. Experimental values were then compared with the available analytical models for validation. The mechanical and electrical properties of the conductive polymer composites were optimized by tailoring the filler particle size to 4 µm and particle loading at 20 wt.%. Compared to neat epoxy, the optimized conductive polymer composites have shown a simultaneous increase in strength, stiffness and conductivity performances, which can find applications in aerospace and electronics industries.


Sign in / Sign up

Export Citation Format

Share Document