scholarly journals The Economics of Residential Solar and Battery Storage: Analyzing the Impact of the Joint IOU Proposal for Net Metering 3.0 in California

2021 ◽  
Vol 12 (04) ◽  
pp. 137-150
Author(s):  
Candace E. Ybarra ◽  
Prashanth U. Nyer ◽  
John B. Broughton ◽  
Thomas A. Turk
Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 407 ◽  
Author(s):  
Dominik Dominković ◽  
Goran Krajačić

The energy transition of future urban energy systems is still the subject of an ongoing debate. District energy supply can play an important role in reducing the total socio-economic costs of energy systems and primary energy supply. Although lots of research was done on integrated modelling including district heating, there is a lack of research on integrated energy modelling including district cooling. This paper addressed the latter gap using linear continuous optimization model of the whole energy system, using Singapore for a case study. Results showed that optimal district cooling share was 30% of the total cooling energy demand for both developed scenarios, one that took into account spatial constraints for photovoltaics installation and the other one that did not. In the scenario that took into account existing spatial constraints for installations, optimal capacities of methane and thermal energy storage types were much larger than capacities of grid battery storage, battery storage in vehicles and hydrogen storage. Grid battery storage correlated with photovoltaics capacity installed in the energy system. Furthermore, it was shown that successful representation of long-term storage solutions in urban energy models reduced the total socio-economic costs of the energy system for 4.1%.


2018 ◽  
Vol 17 ◽  
pp. 01018
Author(s):  
Yuan Wang ◽  
Haojie Liu

In order to analyze the impact of new energy power generation on the power grid system, the reliability evaluation of the wind-solarbattery storage system is carried out. Proposed to wind power, solar, thermal power, different sodium-sulfur battery storage combined optimal dispatch of scenery. The shortest variance of the net load and the maximum variance of the wind storage system are taken as the objective function. The short-term optimal scheduling model of the power grid is established based on the characteristics of the wind farm, the characteristics of the solar field and the electric field of the sodium flow battery. Multi-objective particle swarm optimization The algorithm solves the model and obtains the output power of wind, light, storage and fire under different new energy strategies. The reliability is evaluated by Monte-Carlo method. Taking the IEEE-30 node as an example, it is proved that the proposed model is reasonable and the new energy can improve the clean energy consumption ability and minimize the impact on the power grid under the optimal scheduling strategy.


2013 ◽  
Vol 380-384 ◽  
pp. 2958-2961
Author(s):  
Hong Liu ◽  
Long Wang ◽  
Sai Yi Wang

The impact of PV and Battery storage system on the power supply reliability of distribution network is great. Firstly, the assumptions of the battery storage operating strategy are given, and four typical evaluation indexes are presented. Then, the impacts of different PV peak active power, different battery capacity and PV & Battery Storage on the power supply reliability are discussed. Finally, the impacts of PV, Battery and PV & Battery on the power supply reliability of distribution network are compared and analyzed. These results are provided as references for the optimal capacity configuration of PV & Battery.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1746
Author(s):  
Luka Budin ◽  
Goran Grdenić ◽  
Marko Delimar

The world’s demand for electrical energy is increasing rapidly while the use of fossil fuels is getting limited more and more by energy policies and the need for reducing the impact of climate change. New sources of energy are required to fulfill the world’s demand for electricity and they are currently found in renewable sources of energy, especially in solar and wind power. Choosing the optimal PV nominal power minimizes the unnecessary surplus of electrical energy that is exported to the grid and thus is not making any impact on the grid more than necessary. Oversizing the PV system according to the Croatian net-metering model results in switching the calculation of the costs to the prosumer model which results in a decrease of the project’s net present value (NPV) and an increase in the payback period (PP). This paper focuses on formulating and solving the optimization problem for determining the optimal nominal power of a grid-connected PV system with a case study for Croatia using multiple scenarios in the variability of electricity production and consumption. In this paper, PV systems are simulated in the power range that corresponds to a typical annual high-tariff consumption in Croatian households. Choosing the optimal power of the PV system maximizes the investor’s NPV of the project as well as savings on the electricity costs. The PP is also minimized and is determined by the PV production, household consumption, discount rate, and geographic location. The optimization problem is classified as a quadratically constrained discrete optimization problem, where the value of the optimal PV power is not a continuous variable because the PV power changes with a step of one PV panel power. Modeling and simulations are implemented in Python using the Gurobi optimization solver.


2020 ◽  
Vol 19 ◽  

Hybrid renewable energy sources can be seen as one of the most used way to electrify remote area. They are more suitable for loads with variation in a daily basis demand. In order to size up optimally the hybrid PV/Wind system coupled with battery storage, the proposed technique is based on meteorological data to determine the electrical power produced by PV panels and wind turbine generators. Once this power is determined, the total renewable energy cost per year and the system reliability are optimized for two different scale factor f. To do so, a Backtracking Search algorithm (BSA) is used and thoroughly described throughout this paper. Moreover, some results are carried out concerning the penalty factor ɷ to highlight the impact of this factor on the rate of renewable energy (RELD).


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 227
Author(s):  
Mariusz Trela ◽  
Anna Dubel

The paper explores the impacts of changes in renewable energy sources (RES) financing in Poland on the profitability of coupled photovoltaic panels and heat pump systems. The profitability analysis is conducted with the use of Net Present Value calculation and the return on investment period. The degree of change in profitability of using photovoltaic panels in Poland is dependent on the method of their financing. The analysis is carried out for two different photovoltaic support schemes: (1) the net-metering scheme currently in force in Poland; (2) the net-billing system scheduled for implementation in the year 2022. It is assumed for the analysis that two alternative heating and electricity supply systems for a single-family building will be operated: (a) a standard solution used in Poland consisting of a natural gas-fired boiler for heating and the purchase of electricity from the power grid, (b) an air/water heat pump used to heat the building, and electricity obtained from photovoltaic panels, also used to power the heat pump. A sensitivity analysis is carried out, examining the impact of several key parameters relevant for the profitability of such investments, such as average annual increase in the purchasing or selling prices of electricity, purchasing prices of natural gas, and inflation rate. The conclusions concern the possible consequences of introducing a new support scheme for photovoltaics in Poland. The highest profitability of all considered solutions is for the current scenario for heat pump and pv installation with the capacity to meet the demand in the last year of operation. The introduction of changes in the new RES law (2021) in Poland will reduce the profitability of investments in pv panels, leading to a slowdown in the investments in the pv installations.


2016 ◽  
Vol 162 ◽  
pp. 713-722 ◽  
Author(s):  
Naïm R. Darghouth ◽  
Ryan H. Wiser ◽  
Galen Barbose ◽  
Andrew D. Mills

Sign in / Sign up

Export Citation Format

Share Document