scholarly journals A Novel Thin-Film, Single-Junction Solar Cell Design<sup>1</sup> to Achieve Power Conversion Efficiency above 30 Percent

2016 ◽  
Vol 07 (12) ◽  
pp. 823-835 ◽  
Author(s):  
Joseph Edward O’Connor ◽  
Sherif Michael
2016 ◽  
Vol 18 (4) ◽  
pp. 2906-2912 ◽  
Author(s):  
Hye Jin Lee ◽  
Jae Won Lee ◽  
Hee Jun Kim ◽  
Dae-Han Jung ◽  
Ki-Suk Lee ◽  
...  

A GaAs single junction solar cell with Al-doped ZnO nanosheet-based antireflection coatings was fabricated and showed the largest enhancement (43.9%) in power conversion efficiency.


2011 ◽  
Vol 21 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Byungha Shin ◽  
Oki Gunawan ◽  
Yu Zhu ◽  
Nestor A. Bojarczuk ◽  
S. Jay Chey ◽  
...  

2013 ◽  
Vol 22 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Lian Guo ◽  
Yu Zhu ◽  
Oki Gunawan ◽  
Tayfun Gokmen ◽  
Vaughn R. Deline ◽  
...  

2015 ◽  
Vol 3 (8) ◽  
pp. 4147-4154 ◽  
Author(s):  
Md. Anower Hossain ◽  
Zhang Tianliang ◽  
Lee Kian Keat ◽  
Li Xianglin ◽  
Rajiv R. Prabhakar ◽  
...  

An aqueous spray-pyrolysis approach for synthesizing Cu(In,Ga)(S,Se)2 thin film, which leads to 10.54% power conversion efficiency in solar cell, and shows ease of fabrication of films in large-scale at a much cheaper cost.


2020 ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

Abstract All-inorganic CsPbI3 perovskite quantum dots (QDs) have received intense research interest for photovoltaic applications because of the recently demonstrated higher power conversion efficiency compared to solar cells using other QD materials. These QD devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. In this work, through developing a hybrid interfacial architecture consisting of CsPbI3 QD/PCBM heterojunctions, we report the formation of an energy cascade for efficient charge transfer at both QD heterointerfaces and QD/electron transport layer interfaces. The champion CsPbI3 QD solar cell has a best power conversion efficiency of 15.1%, which is among the highest report to date. Building on this strategy, we demonstrate the very first perovskite QD flexible solar cell with a record efficiency of 12.3%. A detailed morphological characterization reveals that the perovskite QD film can better retain structure integrity than perovskite bulk thin-film under external mechanical stress. This work is the first to demonstrate higher mechanical endurance of QD film compared to bulk thin-film, and highlights the importance of further research on high‐performance and flexible optoelectronic devices using solution-processed QDs.


2016 ◽  
Vol 4 (19) ◽  
pp. 7390-7397 ◽  
Author(s):  
Xin Zhao ◽  
Mingxuan Lu ◽  
Mark J. Koeper ◽  
Rakesh Agrawal

A monoamine–dithiol mixture is used to prepare homogeneous Cu(In, Ga)Se2 (CIGSe) molecular precursor solution, which yields a highly sulfur depleted CIGSe thin-film solar cell with a power conversion efficiency of 12.2%.


2021 ◽  
Vol 01 (01) ◽  
pp. 56-57
Author(s):  
Galhenage A. Sewvandi ◽  
◽  
J.T.S.T. Jayawardane ◽  

Solar energy is a commonly used alternate source of energy and it can be utilized based on the principle of the photovoltaic effect. The photovoltaic effect converts sun energy into electrical energy using photovoltaic devices (solar cells). A solar cell device should have high efficiency and a long lifetime to be commercially beneficial. Presently, silicon and thin-film solar cells are widely employed. The crystalline solar cells are more efficient but they are also expensive. Thin-film solar cells are formed by placing one or more thin layers of photovoltaic materials on different substrates. Although these cells have a lower cost, they are also less efficient compared to Si-based solar cells. Organic-inorganic hybrid lead halide perovskite solar cells are one of the most promising low-cost power conversion efficiency technologies that could exceed the 26% threshold. However, the lack of environmental stability and of high lead toxicity are the main bottlenecks that impede the future industrialization and commercialization hybrid lead halide perovskite. Hence It is important to achieve high power conversion efficiency while also maintaining stability and non-toxicity in the development of new lead-free perovskite materials.


2017 ◽  
Vol 701 ◽  
pp. 901-908 ◽  
Author(s):  
Mingrui He ◽  
A.C. Lokhande ◽  
In Young Kim ◽  
U.V. Ghorpade ◽  
M.P. Suryawanshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document