scholarly journals <i>In Vivo </i> Imaging of Biophoton Emission in the Whole Brain of Mice

2021 ◽  
Vol 13 (09) ◽  
pp. 407-411
Author(s):  
Jinzhong Li ◽  
Chengming Xia ◽  
Yaping Wang ◽  
Linhua Chen ◽  
Jiapei Dai
Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Robert J. Witte ◽  
Norbert G. Campeau ◽  
Kiaran P. McGee ◽  
...  

Abstract Purpose MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. Materials and methods A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman’s ANOVA test. Results MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) Conclusions Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.


Author(s):  
Pavel V. Subochev ◽  
Ekaterina A. Sergeeva ◽  
Mikhail Y. Kirillin ◽  
Daria Kurakina ◽  
Anna G. Orlova ◽  
...  
Keyword(s):  

2012 ◽  
Vol 107 (10) ◽  
pp. 2853-2865 ◽  
Author(s):  
Ji-Wei He ◽  
Fenghua Tian ◽  
Hanli Liu ◽  
Yuan Bo Peng

While near-infrared (NIR) spectroscopy has been increasingly used to detect stimulated brain activities with an advantage of dissociating regional oxy- and deoxyhemoglobin concentrations simultaneously, it has not been utilized much in pain research. Here, we investigated and demonstrated the feasibility of using this technique to obtain whole brain hemodynamics in rats and speculated on the functional relevance of the NIR-based hemodynamic signals during pain processing. NIR signals were emitted and collected using a 26-optodes array on rat's dorsal skull surface after the removal of skin. Following the subcutaneous injection of formalin (50 μl, 3%) into a hindpaw, several isolable brain regions showed hemodynamic changes, including the anterior cingulate cortex, primary/secondary somatosensory cortexes, thalamus, and periaqueductal gray ( n = 6). Time courses of hemodynamic changes in respective regions matched with the well-documented biphasic excitatory response. Surprisingly, an atypical pattern (i.e., a decrease in oxyhemoglobin concentration with a concomitant increase in deoxyhemoglobin concentration) was seen in phase II. In a separate group of rats with innocuous brush and noxious pinch of the same area ( n = 11), results confirmed that the atypical pattern occurred more likely in the presence of nociception than nonpainful stimulation, suggesting it as a physiological substrate when the brain processes pain. In conclusion, the NIR whole brain imaging provides a useful alternative to study pain in vivo using small-animal models. Our results support the notion that neurovascular response patterns depend on stimuli, bringing attention to the interpretation of vascular-based neuroimaging data in studies of pain.


2020 ◽  
Vol 68 ◽  
pp. 167-172 ◽  
Author(s):  
Zhiyan Quan ◽  
Yang Gao ◽  
Shuxian Qu ◽  
Xiaojie Wang ◽  
Robert M. Friedman ◽  
...  
Keyword(s):  

2017 ◽  
Vol 25 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Maxime Donadieu ◽  
Yann Le Fur ◽  
Adil Maarouf ◽  
Soraya Gherib ◽  
Ben Ridley ◽  
...  

Background: Increase of brain total sodium concentrations (TSC) is present in multiple sclerosis (MS), but its pathological involvement has not been assessed yet. Objective: To determine in vivo the metabolic counterpart of brain sodium accumulation. Materials/methods: Whole brain 23Na-MR imaging and 3D-1H-EPSI data were collected in 21 relapsing-remitting multiple sclerosis (RRMS) patients and 20 volunteers. Metabolites and sodium levels were extracted from several regions of grey matter (GM), normal-appearing white matter (NAWM) and white matter (WM) T2 lesions. Metabolic and ionic levels expressed as Z-scores have been averaged over the different compartments and used to explain sodium accumulations through stepwise regression models. Results: MS patients showed significant 23Na accumulations with lower choline and glutamate–glutamine (Glx) levels in GM; 23Na accumulations with lower N-acetyl aspartate (NAA), Glx levels and higher Myo-Inositol (m-Ins) in NAWM; and higher 23Na, m-Ins levels with lower NAA in WM T2 lesions. Regression models showed associations of TSC increase with reduced NAA in GM, NAWM and T2 lesions, as well as higher total-creatine, and smaller decrease of m-Ins in T2 lesions. GM Glx levels were associated with clinical scores. Conclusion: Increase of TSC in RRMS is mainly related to neuronal mitochondrial dysfunction while dysfunction of neuro-glial interactions within GM is linked to clinical scores.


1994 ◽  
Vol 35 (5) ◽  
pp. 495-505 ◽  
Author(s):  
M. Tovi ◽  
M. Hartman ◽  
A. Lilja ◽  
A. Ericsson

A comparative analysis between MR examinations and histopathologic whole-brain sections regarding tumour components was performed in 5 brain specimens from patients with malignant glial brain tumours. All cases were examined with MR imaging in vitro and in 2 cases a close comparison with the MR examinations in vivo was also possible. The most homogeneous hypercellular area in malignant gliomas, giving the highest tumour grade, was not visualised on MR imaging as an isolated entity, either in vitro or in vivo. The most conspicuous tumour component, reflecting the heterogeneity of malignant gliomas, was necrosis. This feature was best depicted in the T2WI. In 4 of 5 cases, distant tumour spread of benign-looking tumour cells was found in areas visualised as normal on T2WI, outside the margins of the peritumoural oedema. In 2 cases, estimation of water content was performed immunohistochemically and a close correlation was found in each case between peritumoural and periventricular hyperintensity on T2WI and areas of pallor on the haematoxylin-eosin-stained whole-brain sections. These areas corresponded to microscopical oedema. MR imaging reflects underlying heterogeneous histopathology in malignant gliomas. The degree of malignancy of the lesion as a whole can thus be assessed by MR imaging. However, the method does not allow malignant gliomas to be correctly delineated.


2016 ◽  
Vol 19 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Markus Aswendt ◽  
Martin Schwarz ◽  
Walid M. Abdelmoula ◽  
Jouke Dijkstra ◽  
Stefanie Dedeurwaerdere

1995 ◽  
Vol 82 (2) ◽  
pp. 393-403 ◽  
Author(s):  
Michael T. Alkire ◽  
Richard J. Haier ◽  
Steven J. Barker ◽  
Nitin K. Shah ◽  
Joseph C. Wu ◽  
...  

Background Although the effects of propofol on cerebral metabolism have been studied in animals, these effects have yet to be directly examined in humans. Consequently, we used positron emission tomography (PET) to demonstrate in vivo the regional cerebral metabolic changes that occur in humans during propofol anesthesia. Methods Six volunteers each underwent two PET scans; one scan assessed awake-baseline metabolism, and the other assessed metabolism during anesthesia with a propofol infusion titrated to the point of unresponsiveness (mean rate +/- SD = 7.8 +/- 1.5 mg.kg-1.h-1). Scans were obtained using the 18fluorodeoxyglucose technique. Results Awake whole-brain glucose metabolic rates (GMR) averaged 29 +/- 8 mumoles.100 g-1.min-1 (mean +/- SD). Anesthetized whole-brain GMR averaged 13 +/- 4 mumoles.100 g-1.min-1 (paired t test, P &lt; or = 0.007). GMR decreased in all measured areas during anesthesia. However, the decrease in GMR was not uniform. Cortical metabolism was depressed 58%, whereas subcortical metabolism was depressed 48% (P &lt; or = 0.001). Marked differences within cortical regions also occurred. In the medial and subcortical regions, the largest percent decreases occurred in the left anterior cingulate and the inferior colliculus. Conclusion Propofol produced a global metabolic depression on the human central nervous system. The metabolic pattern evident during anesthesia was reproducible and differed from that seen in the awake condition. These findings are consistent with those from previous animal studies and suggest PET may be useful for investigating the mechanisms of anesthesia in humans.


Sign in / Sign up

Export Citation Format

Share Document