metabolite quantification
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 2)

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 868
Author(s):  
Malia J. Martin ◽  
Ryan S. Pralle ◽  
Isabelle R. Bernstein ◽  
Michael J. VandeHaar ◽  
Kent A. Weigel ◽  
...  

Selection for more feed efficient dairy cows is key to improving sustainability and profitability of dairy production; however, underlying mechanisms contributing to individual animal feed efficiency are not fully understood. The objective of this study was to identify circulating metabolites, and pathways associated with those metabolites, that differ between efficient and inefficient Holstein dairy cows using targeted metabolite quantification and untargeted metabolomics. The top and bottom fifteen percent of cows (n = 28/group) with the lowest and highest residual feed intake in mid-lactation feed efficiency trials were grouped retrospectively as high-efficient (HE) and low-efficient (LE). Blood samples were collected for quantification of energy metabolites, markers of hepatic function, and acylcarnitines, in addition to a broader investigation using untargeted metabolomics. Short-chain acylcarnitines, C3-acylcarnitine, and C4-acylcarntine were lower in HE cows (n = 18/group). Untargeted metabolomics and multivariate analysis identified thirty-nine differential metabolites between HE and LE (n = 8/group), of which twenty-five were lower and fourteen were higher in HE. Pathway enrichment analysis indicated differences in tryptophan metabolism. Combined results from targeted metabolite quantification and untargeted metabolomics indicate differences in fatty acid and amino acid metabolism between HE and LE cows. These differences may indicate post-absorptive nutrient use efficiency as a contributor to individual animal variation in feed efficiency.


2021 ◽  
Author(s):  
N.A. Campos ◽  
S. Colombie ◽  
Annick Moing ◽  
C. Cassan ◽  
D. Amah ◽  
...  

AbstractWe investigated the fruit development in two plantain banana cultivars from two weeks after bunch emergence till twelve weeks through high-throughput proteomics, major metabolite quantification and metabolic flux analyses. We give for the first time an insight at early stages of starch synthesis and breakdown. Starch and sugar synthesis and breakdown are processes that take place simultaneously. During the first eight to ten weeks the balance between synthesis and breakdown is clearly in favour of sugar breakdown and a net starch synthesis occurs. During this period, plantain fruit accumulates up to 48% of starch. The initiation of the ripening process is accompanied with a shift in balance towards net starch breakdown. The key enzymes related to this are phosphoglucan water dikinase (PWD), phosphoglucan phosphatase, α-1,6-glucosidase starch debranching enzyme (DBE), alpha glucan phosphorylase (PHS) and 4-alpha glucanotransferase disproportioning enzyme (DPE). The highest correlations with sucrose have been observed for PHS and DPE. There is also a significant correlation between the enzymes involved in ethylene biosynthesis, starch breakdown, pulp softening and ascorbate biosynthesis. The faster ending of maturation and starting of ripening in the Agbagba cultivar are linked to the key enzymes 1-aminocyclopropane-1-carboxylate oxidase and DPE. This knowledge of the mechanisms that regulate starch and sugar metabolisms during maturation and ripening is fundamental to determine the harvest moment, reduce postharvest losses and improve final product quality of breeding programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Scarsini ◽  
Adrien Thurotte ◽  
Brigitte Veidl ◽  
Frederic Amiard ◽  
Frederick Niepceron ◽  
...  

Diatoms are feedstock for the production of sustainable biocommodities, including biofuel. The biochemical characterization of newly isolated or genetically modified strains is seminal to identify the strains that display interesting features for both research and industrial applications. Biochemical quantification of organic macromolecules cellular quotas are time-consuming methodologies which often require large amount of biological sample. Vibrational spectroscopy is an essential tool applied in several fields of research. A Fourier transform infrared (FTIR) microscopy-based imaging protocol was developed for the simultaneous cellular quota quantification of lipids, carbohydrates, and proteins of the diatom Phaeodactylum tricornutum. The low amount of sample required for the quantification allows the high throughput quantification on small volume cultures. A proof of concept was performed (1) on nitrogen-starved experimental cultures and (2) on three different P. tricornutum wild-type strains. The results are supported by the observation in situ of lipid droplets by confocal and brightfield microscopy. The results show that major differences exist in the regulation of lipid metabolism between ecotypes of P. tricornutum.


2021 ◽  
Author(s):  
Ruben Casanova-Saez ◽  
Eduardo Mateo-Bonmati ◽  
Jan Simura ◽  
Ales Pencik ◽  
Ondrej Novak ◽  
...  

Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of their levels is of great relevance for plant performance. Cellular IAA concentration depends on the combined result of its transport, biosynthesis and various redundant pathways to inactivate IAA, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high level of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock-out the group II GH3 pathway. The gh3oct plants had an improved root architecture, were more tolerant to osmotic stresses due to locally increased IAA levels and were more drought tolerant. IAA metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that oxIAA production depends, at least partly, on the GH3 pathway. Targeted stress-hormone analysis further suggested an involvement of ABA in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Ting-Ting Luo ◽  
Zhong-Hai Sun ◽  
Chu-Xin Li ◽  
Jin-Lian Feng ◽  
Zhao-Xiu Xiao ◽  
...  

AbstractSweat is a noninvasive biological fluid on the surface of human skin and has attracted increasing attention as a diagnostic specimen for disease and biomarker detection. Sweat metabolite quantification is possible due to progress in sweat analysis techniques; nevertheless, the role of sweat monitoring in energy metabolism, physiological or pathological state assessment, health status assessment, and the development and outcome of metabolism-related diseases remains unclear. This review provides a comprehensive overview of the literature on human sweat lactate concentration. The first, second, and third sections of this review present an introduction of sweat lactate, methods for the collection and storage of sweat lactate samples, and methods of detection and analysis of sweat lactate, respectively. The fourth section elaborates upon the current state of clinical application of sweat lactate monitoring and its prospects for health surveillance. The last section focuses on the challenges and future directions of this novel technology for detecting lactate in sweat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. J. P. Rautureau ◽  
B. Morio ◽  
S. Guibert ◽  
C. Lefevre ◽  
J. Perrier ◽  
...  

AbstractObesity is associated with both chronic and acute respiratory illnesses, such as asthma, chronic obstructive pulmonary disease (COPD) or increased susceptibility to infectious diseases. Anatomical but also systemic and local metabolic alterations are proposed contributors to the pathophysiology of lung diseases in the context of obesity. To bring perspective to this discussion, we used NMR to compare the obesity-associated metabolomic profiles of the lung with those of the liver, heart, skeletal muscles, kidneys, brain and serum from male C57Bl/6J mice fed with a high-fat and high-sucrose (HFHSD) diet vs. standard (SD) chow for 14 weeks. Our results showed that the lung was the second most affected organ after the liver, and that the two organs shared reduced one-carbon (1C) metabolism and increased lipid accumulation. Altered 1C metabolism was found in all organs and in the serum, but serine levels were increased only in the lung of HFHSD compared to SD. Lastly, tricarboxylic acid (TCA)-derived metabolites were specifically and oppositely regulated in the serum and kidneys but not in other organs. Collectively, our data highlighted that HFHSD induced specific metabolic changes in all organs, the lung being the second most affected organ, the main alterations affecting metabolite concentrations of the 1C pathway and, to a minor extend, TCA. The absolute metabolite quantification performed in this study reveals some metabolic specificities affecting both the liver and the lung, that may reveal common metabolic determinants to the ongoing pathological process.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 157
Author(s):  
Roy Chih Chung Wang ◽  
David A. Campbell ◽  
James R. Green ◽  
Miroslava Čuperlović-Culf

High-throughput metabolomics can be used to optimize cell growth for enhanced production or for monitoring cell health in bioreactors. It has applications in cell and gene therapies, vaccines, biologics, and bioprocessing. NMR metabolomics is a method that allows for fast and reliable experimentation, requires only minimal sample preparation, and can be set up to take online measurements of cell media for bioreactor monitoring. This type of application requires a fully automated metabolite quantification method that can be linked with high-throughput measurements. In this review, we discuss the quantifier requirements in this type of application, the existing methods for NMR metabolomics quantification, and the performance of three existing quantifiers in the context of NMR metabolomics for bioreactor monitoring.


Author(s):  
Saif ul Malook ◽  
Yuxing Xu ◽  
Jinfeng Qi ◽  
Jing Li ◽  
Lei Wang ◽  
...  

Abstract Biotic and abiotic cues can trigger priming in plants, which enables plants to respond to subsequent challenge with stronger and/or faster responses. It is well known that herbivory activates defense-related responses in systemic leaves. However, little is known about whether insect feeding activates priming in systemic leaves. To determine whether and how herbivory induces priming in maize systemic leaves, a combination of insect bioassays, phytohormone and defense metabolite quantification, and genetic and transcriptome analyses were performed. Actual and simulated Mythimna separata herbivory in maize local leaves primed the systemic leaves for enhanced accumulation of jasmonic acid and benzoxazinoids and increased resistance to M. separata. Activation of priming in maize systemic leaves depends on both the duration of simulated herbivory and perception of M. separata oral secretions in the local leaves, and genetic analysis indicated that jasmonic acid and benzoxazinoids mediate the primed defenses in systemic leaves. Consistently, in response to simulated herbivory, the primed systemic leaves exhibited a large number of genes that were uniquely regulated or showed further up- or down-regulation compared with the non-primed systemic leaves. This study provides new insight into the regulation and ecological function of priming in maize.


Author(s):  
Oscar Jalnefjord ◽  
Patrick Pettersson ◽  
Lukas Lundholm ◽  
Maria Ljungberg

Abstract Objective To study the need for inclusion of shaped RF pulses and magnetic field gradients in simulations of basis sets for the analysis of proton MR spectra of single voxels of the brain acquired with a semi-LASER pulse sequence. Materials and methods MRS basis sets where simulated at different echo times with hard RF pulses as well as with shaped RF pulses without or with magnetic field gradients included. The influence on metabolite concentration quantification was assessed using both phantom and in vivo measurements. For comparison, simulations and measurements were performed with the PRESS pulse sequence. Results The effect of including gradients in the simulations was smaller for semi-LASER than for PRESS, however, still noticeable. The difference was larger for strongly coupled metabolites and at longer echo times. Metabolite quantification using semi-LASER was thereby less dependent on the inclusion of gradients than PRESS, which was seen in both phantom and in vivo measurements. Discussion The inclusion of the shaped RF pulses and magnetic field gradients in the simulation of basis sets for semi-LASER is only important for strongly coupled metabolites. If computational time is a limiting factor, simple simulations with hard RF pulses can provide almost as accurate metabolite quantification as those that include the chemical-shift related displacement.


Sign in / Sign up

Export Citation Format

Share Document