scholarly journals Organic and Elemental Carbon in Atmospheric Fine Particulate Matter in an Animal Agriculture Intensive Area in North Carolina: Estimation of Secondary Organic Carbon Concentrations

2013 ◽  
Vol 02 (01) ◽  
pp. 7-18 ◽  
Author(s):  
Qian-Feng Li ◽  
Lingjuan Wang-Li ◽  
R. K. M. Jayanty ◽  
Sanjay B. Shah
Environments ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 21 ◽  
Author(s):  
Ju Wang ◽  
Anan Yu ◽  
Le Yang ◽  
Chunsheng Fang

In order to understand the distribution characteristics of organic carbon (OC) and elemental carbon (EC) in PM2.5 in Changchun; China; PM2.5 samples were collected from April 2017 to December 2017 using the KC-120H particulate matter sampler; and the NIOSH 5040 method was used for determination. The results showed that the average concentration of PM2.5 in Changchun was 45.92 µg/m3 (45.92 ± 50.17), and the annual average concentrations of OC and EC ranged from 15.69 to 24.32 µg/m3 and from 1.38 to 2.33 µg/m3; respectively. The annual OC/EC ratio range was 8.08–15.44; with an average of 11.70. OC and EC concentrations in spring were the lowest; whereas higher levels of both OC and EC were found in winter. Significant correlations between OC and EC were found in the non-heating period; indicating that there was a consistent or similar source; whereas OC was non-significantly correlated with EC in the heating period; suggesting that contributions of OC were from unrelated combustion sources.


Author(s):  
Takehiro Michikawa ◽  
Seiichi Morokuma ◽  
Shin Yamazaki ◽  
Akinori Takami ◽  
Seiji Sugata ◽  
...  

Abstract Background Maternal exposure to fine particulate matter (PM2.5) was associated with pregnancy complications. However, we still lack comprehensive evidence regarding which specific chemical components of PM2.5 are more harmful for maternal and foetal health. Objective We focused on exposure over the first trimester (0–13 weeks of gestation), which includes the early placentation period, and investigated whether PM2.5 and its components were associated with placenta-mediated pregnancy complications (combined outcome of small for gestational age, preeclampsia, placental abruption, and stillbirth). Methods From 2013 to 2015, we obtained information, from the Japan Perinatal Registry Network database, on 83,454 women who delivered singleton infants within 23 Tokyo wards (≈627 km2). Using daily filter sampling of PM2.5 at one monitoring location, we analysed carbon and ion components, and assigned the first trimester average of the respective pollutant concentrations to each woman. Results The ORs of placenta-mediated pregnancy complications were 1.14 (95% CI = 1.08–1.22) per 0.51 μg/m3 (interquartile range) increase of organic carbon and 1.11 (1.03–1.18) per 0.06 μg/m3 increase of sodium. Organic carbon was also associated with four individual complications. There was no association between ozone and outcome. Significance There were specific components of PM2.5 that have adverse effects on maternal and foetal health.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Toro Araya ◽  
Robert Flocchini ◽  
Rául G. E. Morales Segura ◽  
Manuel A. Leiva Guzmán

Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter.


2018 ◽  
Vol 240 ◽  
pp. 34-43 ◽  
Author(s):  
Ibrahim M. Al-Naiema ◽  
Subin Yoon ◽  
Yu-Qin Wang ◽  
Yuan-Xun Zhang ◽  
Rebecca J. Sheesley ◽  
...  

2009 ◽  
Vol 43 (11) ◽  
pp. 1099-1107 ◽  
Author(s):  
David C. Snyder ◽  
Andrew P. Rutter ◽  
Ryan Collins ◽  
Chris Worley ◽  
James J. Schauer

Sign in / Sign up

Export Citation Format

Share Document