scholarly journals Characterization of Radiolucent and Electro-Magnetic Properties of Polymer PEDOT: PSS for Radiological Applications

2017 ◽  
Vol 07 (02) ◽  
pp. 17-28 ◽  
Author(s):  
Laura Guérin ◽  
Christophe Loyez ◽  
Kamel Guerchouche ◽  
Fouad Maaloul
Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


2020 ◽  
Vol 43 (1) ◽  
pp. 26-42 ◽  
Author(s):  
Zahra Hajian Karahroudi ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

AbstractThis study presents a preparation of SrFe12O19– SrTiO3 nanocomposite synthesis via the green auto-combustion method. At first, SrFe12O19 nanoparticles were synthesized as a core and then, SrTiO3 nanoparticles were prepared as a shell for it to manufacture SrFe12O19–SrTiO3 nanocomposite. A novel sol-gel auto-combustion green synthesis method has been used with lemon juice as a capping agent. The prepared SrFe12O19–SrTiO3 nanocomposites were characterized by using several techniques to characterize their structural, morphological and magnetic properties. The crystal structures of the nanocomposite were investigated via X-ray diffraction (XRD). The morphology of SrFe12O19– SrTiO3 nanocomposite was studied by using a scanning electron microscope (SEM). The elemental composition of the materials was analyzed by an energy-dispersive X-ray (EDX). Magnetic properties and hysteresis loop of nanopowder were characterized via vibrating sample magnetometer (VSM) in the room temperature. Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed the molecular bands of nanoparticles. Also, the photocatalytic behavior of nanocomposites has been checked by the degradation of azo dyes under irradiation of ultraviolet light.


2009 ◽  
Vol 113 (39) ◽  
pp. 16934-16938 ◽  
Author(s):  
S. Y. Liu ◽  
A. K. Soh ◽  
L. Hong ◽  
L. Lu

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaopeng Xiong ◽  
Yong Wang ◽  
Weiwei Zou ◽  
Jiangjiang Duan ◽  
Yun Chen

By dispersing aqueous precipitant in liquid paraffin to prepare a W/O emulsion then adding chitosan (CS) solution, CS microcapsules have been successfully prepared. It is a facile way to prepare polymer microcapsules by using aqueous precipitant or nonsolvent as template, which avoids the removal of template and would free from the necessity to cross-link the microcapsule as usual methods to directly form dense shell. The hollow feature of the obtained materials is revealed. The diameter of the microcapsules ranges from severalμm to over 100 μm. Magnetic CS microcapsules have been prepared in this way when Fe3+and Fe2+were mixed with CS to prepare a mixture starting solution. The appearance and microstructure of the composite microcapsules were studied. The results indicate that the formed Fe3O4nanoparticles are embedded in the CS matrix evenly due to strong interaction between the Fe3O4nanoparticles and the CS molecules. The Fe3O4content and the magnetic properties of the composite microcapsule were measured. The composite microcapsules were calcined in air at 700°C to prepare pure inorganic hollow microspheres. It is general to prepare hollow polymeric or composite particles by using this method.


2009 ◽  
Vol 24 (2) ◽  
pp. 324-332 ◽  
Author(s):  
X.T. Liew ◽  
K.C. Chan ◽  
L.B. Kong

This paper reports on the preparation and characterization of nickel ferrite (NiFe1.98O4) ceramics doped with Bi2O3 as sintering aid. Focus has been on the effects of concentration of Bi2O3 and sintering temperature on the densification, grain growth, dielectric, and magnetic properties of the NiFe1.98O4 ceramics, with an aim at developing magnetodielectric properties, with almost equal real permeability and permittivity, as well as sufficiently low magnetic and dielectric loss tangents, over 3 to 30 MHz (high frequency or HF band). X-ray diffraction results indicated that there is no obvious reaction between NiFe1.98O4 and Bi2O3, at Bi2O3 levels of up to 7 wt% and temperatures up to 1150 °C. The addition of Bi2O3 facilitated a liquid phase sintering mechanism for the densification of NiFe1.98O4 ceramics. The addition of Bi2O3 not only improved the densification but also promoted the grain growth of NiFe1.98O4 ceramics. To achieve sufficiently low dielectric loss tangent, the concentration of Bi2O3 should not be less than 5 wt%. The low dielectric loss tangents of the samples doped with high concentrations of Bi2O3 can be attributed to the full densification of the ceramics. Magnetic properties of the NiFe1.98O4 ceramics, as a function of sintering temperature and Bi2O3 concentration, can be qualitatively explained by the Globus model. Promising magnetodielectric properties have been obtained in the sample doped with 5% Bi2O3 and sintered at 1050 °C for 2 h. The sample has almost equal values of permeability and permittivity of ∼12, together with low dielectric and magnetic loss tangents, over 3 to 30 MHz. This material might be useful for the miniaturization of HF (3 to 30 MHz) antennas.


2007 ◽  
Vol 20 (6) ◽  
pp. 739-742 ◽  
Author(s):  
Yuan-xun Li ◽  
Huai-wu Zhang ◽  
Ying-li Liu ◽  
John Q. Xiao

2021 ◽  
Vol 892 ◽  
pp. 10-16
Author(s):  
Ismi Nurul ◽  
Syamsuddin Yanna ◽  
Adisalamun ◽  
Aulia Sugianto Veneza ◽  
Darmadi

In this study, iron removal was carried out by the adsorption process as a well-known method of removing heavy metal. Natural bentonite with magnetic properties in a monolithic form or Magnetite-Bentonite-based Monolith (MBM) adsorbent was used as an adsorbent to remove Iron (II) ion from the aqueous solution. The magnetic properties of adsorbents are obtained by adding magnetite (Fe3O4), which is synthesized by the coprecipitation process. The characterization of magnetic properties was performed using the Vibrating Sample Magnetometer (VSM). VSM results showed that the magnetic particles were ferromagnetic. Adsorption efficiency, isotherm model, and adsorption kinetics were investigated in a batch system with iron solution concentration varied from 2 to 10 mg/L and magnetite loading at 2% and 5% w/w. The highest removal efficiency obtained reached 89% with a 5% magnetite loading. The best fit to the data was obtained with the Langmuir isotherm (non-linear) with maximum monolayer adsorption capacity (Qo) at 5% magnetic loading MBM adsorbent is 0.203 mg/g with Langmuir constants KL and aL are 2.055 L/g and 10.122 L/mg respectively. The pseudo-first-order (non-linear) kinetic model provides the best correlation of the experimental data with the rate of adsorption (k1) with magnetite loading 2% and 5%, respectively are 0.024 min-1 and 0.022 min-1.


Sign in / Sign up

Export Citation Format

Share Document