scholarly journals Combined Multifactor Evidence of a Giant Lower-Mantle Ring Structure below the Eastern Mediterranean

Positioning ◽  
2020 ◽  
Vol 11 (02) ◽  
pp. 11-32 ◽  
Author(s):  
Lev Eppelbaum ◽  
Zvi Ben-Avraham ◽  
Youri Katz ◽  
Sierd Cloetingh ◽  
Mikhail Kaban
2020 ◽  
Author(s):  
Derya Gürer ◽  
Douwe J J van Hinsbergen ◽  
Douwe van der Meer ◽  
Wim Spakman

<p>A current frontier in paleogeographic and geodynamic research is the reconstruction of the plate tectonic evolution of deep-time ocean basins. However, deep-time plate reconstructions of now-subducted ocean basins are challenging and often result in competing tectonic models, particularly when the upper plate was oceanic and is only preserved as ophiolitic relics. Correlations between paleogeography and tomographically imaged slab remnants has unlocked Earth’s modern mantle structure as an archive for the analysis of such deep-time geological processes. The geology of the western Tethyan realm from Greece to Oman in northeastern Arabia, holds records of the subsequent closure of the Paleo- and Neotethyan oceanic realms and of plates and microcontinents therein due to subduction since the Permian. Kinematic restorations reveal that the western Tethys contained at least three discrete plate systems bounded by transform faults, similar to the Atlantic Ocean today. Previous tomography-geology studies have interpreted the upper and lower mantle structure in terms of subduction history for the Aegean and Arabian segments, but particularly lower mantle structure of the Anatolian segment has not been resolved in detail before. In this segment, kinematic restorations have suggested that at least four subduction zones were responsible for the consumption of oceanic lithosphere, two consuming the Paleotethys, and two consuming the Neotethys. For the Neotethys system, slab segmentation may have led to more than two slab segments in the final mantle architecture. We here interpret the upper, and for the first-time, the lower mantle structure associated with the Anatolian segment, thereby unraveling western Tethys oceanic lithosphere lost to subduction since the Early Triassic, and link this to mantle structure and subduction evolution of the Aegean and Arabian segments. The modern mantle structure as imaged in the tomographic P-wave speed model UU-P07, tested against multi-model vote maps, provides means to find the relics of the complex subduction history and to discern between existing tectonic models. The tomographic  model reveals ten major positive wave speed anomalies interpreted as slab remnants: the previously identified Aegean, Algerian, Emporios, Antalya, Egypt (which is part of the Arabian slabs), Cyprus, Mesopotamia, Al Jawf, and Zagros slabs, and the newly identified Pontide and Herodotus slabs, partly in the upper, but mostly in the lower mantle. We compare the dimensions, locations, and orientations of these slabs with the kinematically-restored subducted area of the Neotethys, and identify the deepest lower mantle anomalies (Emposios, Herodotus, Al Jawf) as remnants of Paleotethys subduction of the three segments, and the remaining anomalies as the expression of complex Neotethys subduction, consistent with recent kinematic restorations of Eastern Mediterranean and Arabian orogenic history. Moreover, we confirm recent findings that the orientation of slabs influences their net sinking rate, with vertical slabs subducted at mantle-stationary trenches sinking faster than flat-lying slabs that once draped the mantle transition zone due to roll-back or trench advance.</p>


Author(s):  
J. Silcox ◽  
R. H. Wade

Recent work has drawn attention to the possibilities that small angle electron scattering offers as a source of information about the micro-structure of vacuum condensed films. In particular, this serves as a good detector of discontinuities within the films. A review of a kinematical theory describing the small angle scattering from a thin film composed of discrete particles packed close together will be presented. Such a model could be represented by a set of cylinders packed side by side in a two dimensional fluid-like array, the axis of the cylinders being normal to the film and the length of the cylinders becoming the thickness of the film. The Fourier transform of such an array can be regarded as a ring structure around the central beam in the plane of the film with the usual thickness transform in a direction normal to the film. The intensity profile across the ring structure is related to the radial distribution function of the spacing between cylinders.


Author(s):  
Chi-Ming Wei ◽  
Margaret Hukee ◽  
Christopher G.A. McGregor ◽  
John C. Burnett

C-type natriuretic peptide (CNP) is a newly identified peptide that is structurally related to atrial (ANP) and brain natriuretic peptide (BNP). CNP exists as a 22-amino acid peptide and like ANP and BNP has a 17-amino acid ring formed by a disulfide bond. Unlike these two previously identified cardiac peptides, CNP lacks the COOH-terminal amino acid extension from the ring structure. ANP, BNP and CNP decrease cardiac preload, but unlike ANP and BNP, CNP is not natriuretic. While ANP and BNP have been localized to the heart, recent investigations have failed to detect CNP mRNA in the myocardium although small concentrations of CNP are detectable in the porcine myocardium. While originally localized to the brain, recent investigations have localized CNP to endothelial cells consistent with a paracrine role for CNP in the control of vascular tone. While CNP has been detected in cardiac tissue by radioimmunoassay, no studies have demonstrated CNP localization in normal human heart by immunoelectron microscopy.


2001 ◽  
Vol 112 (3-4) ◽  
pp. 261-308 ◽  
Author(s):  
S. Brullo ◽  
G. Giusso del Galdo ◽  
R. Guarino

Author(s):  
Claire Voisin

This book provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The book is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by the author. It focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by the author looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Sign in / Sign up

Export Citation Format

Share Document