scholarly journals Investigating the Damaging Effects of the Cyclic Discharge in the Uni-Axial Compression of <i>Raphia vinifera</i> L. Arecacea

2021 ◽  
Vol 09 (01) ◽  
pp. 15-25
Author(s):  
Brice Poumegne Kouam ◽  
Didier Fokwa ◽  
Dieunedort Ndapeu ◽  
Médard Fogue
Author(s):  
Elvys Reis ◽  
Caroline Martins Calisto ◽  
Ana Lydia Castro e Silva ◽  
hermes carvalho

2018 ◽  
Vol 21 (4) ◽  
pp. 262-270 ◽  
Author(s):  
Zehao Huang ◽  
Na Li ◽  
Kaifeng Rao ◽  
Cuiting Liu ◽  
Zijian Wang ◽  
...  

Background: More than 2,000 chemicals have been used in the tannery industry. Although some tannery chemicals have been reported to have harmful effects on both human health and the environment, only a few have been subjected to genotoxicity and cytotoxicity evaluations. Objective: This study focused on cytotoxicity and genotoxicity of ten tannery chemicals widely used in China. Materials and Methods: DNA-damaging effects were measured using the SOS/umu test with Salmonella typhimurium TA1535/pSK1002. Chromosome-damaging and cytotoxic effects were determined with the high-content in vitro Micronucleus test (MN test) using the human-derived cell lines MGC-803 and A549. Conclusion: The cytotoxicity of the ten tannery chemicals differed somewhat between the two cell assays, with A549 cells being more sensitive than MGC-803 cells. None of the chemicals induced DNA damage before metabolism, but one was found to have DNA-damaging effects on metabolism. Four of the chemicals, DY64, SB1, DB71 and RR120, were found to have chromosome-damaging effects. A Quantitative Structure-Activity Relationship (QSAR) analysis indicated that one structural feature favouring chemical genotoxicity, Hacceptor-path3-Hacceptor, may contribute to the chromosome-damaging effects of the four MN-test-positive chemicals.


1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


Sign in / Sign up

Export Citation Format

Share Document