scholarly journals Ion Source Optimisation for Proton Beam Quality of the Van De Graaff Accelerator at iThemba LABS for Ion Beam Analysis

2013 ◽  
Vol 03 (03) ◽  
pp. 83-86
Author(s):  
M. E. M. Eisa ◽  
J. L. Conradie ◽  
P. J. Celliers ◽  
J. L. G. Delsink ◽  
D. T. Fourie ◽  
...  
2010 ◽  
Vol 17 (3) ◽  
pp. 415-425
Author(s):  
José Lopes ◽  
Francisco Alegria ◽  
Luís Redondo ◽  
Jorge Rocha ◽  
Eduardo Alves

Computer Control of a 3 MV Van de Graaff AcceleratorThe development of accurate computer control of a 3 MV Van de Graaff accelerator operation is described. The developed system comprises the accelerator turn-on and turn-off procedures during a normal run, which includes the setting of the terminal voltage, ion source light up, beam focusing and control of ion beam current and energy during operation. In addition, the computer monitors the vacuum and is able to make a detail register of the most important events during a normal run. The computer control system uses a LabVIEW application for interaction with the operator and an I/O board that interfaces the computer and the accelerator system. For everyday operating conditions the control implemented is able to turn-on and off the machine in about the same time as a specialized technician. In addition, today more users can make experiments in the accelerator without the help of a specialized operator, which in turns increases the number of hours during which the accelerator can be used.


2020 ◽  
Vol 15 ◽  
pp. 269
Author(s):  
F. Noli ◽  
P. Misaelides ◽  
M. Kokkoris ◽  
J. P. Riviere

Three series of protective coatings (thickness ca. 200-300 nm) were prepared on the surface of Ti-Al-V alloy (TA6V): silicon carbide (SiC) films produced by ion sputtering (I), silicon carbide films and subjected to Dynamic Ion Mixing (DIM) during the deposition procedure (II) and Diamond Like Carbon (DLC) films produced by ion beam deposition (III). The chemical composition (Si, C and O) of the films was determined using ion beam analysis techniques. The silicon, carbon and oxygen depth distribution was determined by proton Rutherford backscattering spectrometry (p-RBS) and using the resonances at 4.265 and 3.035 MeV of the 12C(α,α)12C and 16O(α,α)16O interactions respectively. The ratio of Si:C was found to be close to the stoichiometric one. The corrosion resistance of the coated samples was tested under strong aggressive conditions (5M HCl at 50 oC). The investigation following the corrosion attack showed that the thickness of the films remained practically unchanged. Only slight diffusion and dissolution effects were observed indicating the good quality of the produced thin films.


2019 ◽  
Vol 297 ◽  
pp. 100-110 ◽  
Author(s):  
Nick Lucas ◽  
Kelsey E. Seyfang ◽  
Andrew Plummer ◽  
Michael Cook ◽  
K. Paul Kirkbride ◽  
...  

Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Sören Möller ◽  
Daniel Höschen ◽  
Sina Kurth ◽  
Gerwin Esser ◽  
Albert Hiller ◽  
...  

The analysis of material composition by ion-beam analysis (IBA) is becoming a standard method, similar to electron microscopy. A pool of IBA methods exists, from which the combination of particle-induced-X-ray emission (PIXE), particle induced gamma-ray analysis (PIGE), nuclear-reaction-analysis (NRA), and Rutherford-backscattering-spectrometry (RBS) provides the most complete analysis over the whole periodic table in a single measurement. Yet, for a highly resolved and accurate IBA analysis, a sophisticated technical setup is required integrating the detectors, beam optics, and sample arrangement. A new end-station developed and installed in Forschungszentrum Jülich provides these capabilities in combination with high sample throughput and result accuracy. Mechanical tolerances limit the device accuracy to 3% for RBS. Continuous pumping enables 5*10−8 mbar base pressure with vibration amplitudes < 0.1 µm. The beam optics achieves a demagnification of 24–34, suitable for µ-beam analysis. An in-vacuum manipulator enables scanning 50 × 50 mm² sample areas with 10 nm accuracy. The setup features the above-mentioned IBA detectors, enabling a broad range of analysis applications such as the operando analysis of batteries or the post-mortem analysis of plasma-exposed samples with up to 3000 discrete points per day. Custom apertures and energy resolutions down to 11 keV enable separation of Fe and Cr in RBS. This work presents the technical solutions together with the quantification of these challenges and their success in the form of a technical reference.


Sign in / Sign up

Export Citation Format

Share Document