Computer Control of a 3 MV Van de Graaff Accelerator

2010 ◽  
Vol 17 (3) ◽  
pp. 415-425
Author(s):  
José Lopes ◽  
Francisco Alegria ◽  
Luís Redondo ◽  
Jorge Rocha ◽  
Eduardo Alves

Computer Control of a 3 MV Van de Graaff AcceleratorThe development of accurate computer control of a 3 MV Van de Graaff accelerator operation is described. The developed system comprises the accelerator turn-on and turn-off procedures during a normal run, which includes the setting of the terminal voltage, ion source light up, beam focusing and control of ion beam current and energy during operation. In addition, the computer monitors the vacuum and is able to make a detail register of the most important events during a normal run. The computer control system uses a LabVIEW application for interaction with the operator and an I/O board that interfaces the computer and the accelerator system. For everyday operating conditions the control implemented is able to turn-on and off the machine in about the same time as a specialized technician. In addition, today more users can make experiments in the accelerator without the help of a specialized operator, which in turns increases the number of hours during which the accelerator can be used.

2013 ◽  
Vol 03 (03) ◽  
pp. 83-86
Author(s):  
M. E. M. Eisa ◽  
J. L. Conradie ◽  
P. J. Celliers ◽  
J. L. G. Delsink ◽  
D. T. Fourie ◽  
...  

2021 ◽  
Vol 16 (08) ◽  
pp. T08013
Author(s):  
C.G. Puigvert-Angulo ◽  
R. Espejel ◽  
C. Valencia ◽  
A.O. Valdez-Guerrero ◽  
J. Mas-Ruiz ◽  
...  

In s.i.m.s. the sample surface is ion bombarded and the emitted secondary ions are mass analysed. When used in the static mode with very low primary ion beam current densities (10 -11 A/mm 2 ), the technique analyses the outermost atomic layers with the following advantages (Benninghoven 1973, I975): the structural—chemical nature of the surface may be deduced from the masses of the ejected ionized clusters of atoms; detection of hydrogen and its compounds is possible; sensitivity is extremely high (10 -6 monolayer) for a number of elements. Composition profiles are obtained by increasing the primary beam current density (dynamic mode) or by combining the technique in the static mode with ion beam machining with a separate, more powerful ion source. The application of static s.i.m.s. in metallurgy has been explored by analysing a variety of alloy surfaces after fabrication procedures in relation to surface quality and subsequent performance. In a copper—silver eutectic alloy braze it was found that the composition of the solid surface depended markedly on its pretreatment. Generally there was a surface enrichment of copper relative to silver in melting processes while sawing and polishing enriched the surface in silver


1968 ◽  
Vol 7 (8) ◽  
pp. 936-938 ◽  
Author(s):  
Yoshikazu Kumamoto ◽  
Akira Isoya

Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 310-318 ◽  
Author(s):  
Yusuke Yokoyama ◽  
Mamito Koizumi ◽  
Hiroyuki Matsuzaki ◽  
Yosuke Miyairi ◽  
Naohiko Ohkouchi

We have developed accelerator mass spectrometry (AMS) measurement techniques for ultra small-size samples ranging from 0.01 to 0.10 mg C with a new type of MC-SNICS ion source system. We can generate 4 times higher ion beam current intensity for ultra-small samples by optimization of graphite position in the target holder with the new ionizer geometry. CO2 gas graphitized in the newly developed vacuum line is pressed to a depth of 1.5 mm from the front of the target holder. This is much deeper than the previous position at 0.35 mm depth. We measured 12C4+ beam currents generated by small standards and ion beam currents (15–30 μA) from the targets in optimized position, lasting 20 min for 0.01 mg C and 65 min for 0.10 mg C. We observed that the measured 14C/12C ratios are unaffected by the difference of ion beam currents ranging from 5 to 30 μA, enabling measurement of ultra-small samples with high precision. Examination of the background samples revealed 1.1 μg of modern and 1 μg of dead carbon contaminations during target graphite preparation. We make corrections for the contamination from both the modern and background components. Reduction of the contamination is necessary for conducting more accurate measurement.


2003 ◽  
Vol 02 (04n05) ◽  
pp. 375-379 ◽  
Author(s):  
A. A. TSENG ◽  
B. LEELADHARAN ◽  
B. LI ◽  
I. INSUA ◽  
C. D. CHEN

The capability of using Focused Ion Beam (FIB) for milling microchannels is experimentally and theoretically investigated. Microchannel structures are fabricated by a NanoFab 150 FIB machine, using an Arsenic (As2+) ion source. A beam current of 5 pA at 90 keV accelerating energy is used. Several microchannel patternings are milled at various dwell times at pixel spacing of 14.5 nm on top of a 60 nm gold-coated silicon wafer. An analytical/numerical model is developed to predict the FIB milling behavior. By comparing with the experimental measurements, the model predictions have been demonstrated to be reliable for guiding and controlling the milling processes.


Sign in / Sign up

Export Citation Format

Share Document