Development of a Supercapacitor Hybrid Powertrain Design with Pulse-Width Modulation and Series Configuration for Light Electric Vehicles

2021 ◽  
Vol 10 (1) ◽  
pp. 79-87
Author(s):  
Brayden Noh
Author(s):  
Sony Prakarsa Putra ◽  
Zulwisli Zulwisli

This study aims to create a PWM inverter that can drive the Brushless Unidirectional Flow Machine (MASTS). PWM inverters are intended to correct deficiencies in six-step inverters. Inverter is a circuit that is used to convert a DC voltage source into an AC voltage with a certain frequency. The use of inverters is found in electric vehicles. The system often used to control an inverter is a Pulse Width Modulation (PWM) based control, where pulse width is used to regulate speed. The inverter is tested using 3 pairs of mosfets as a switch to control the three-phase output of the inverter. In the inverter, PWM is used to adjust the width of the frequency pulse that will be given to the mosfet. This research used 3 variations of duty cycle 30%, 60%, 90% to determine the effect of MASTS speed on PWM by using a PWM inverter. The results of this study the speed of MASTS can be influenced by changes in duty cycle, with increasing value of the duty cycle, the faster the speed of MASTS, and vice versa. Keywords:Mosfet, Sensor Hall, MASTS, PWM, Inverter.


Author(s):  
Saurav Das ◽  
Khosru M. Salim ◽  
Dhiman Chowdhury ◽  
Mohammed Mahedi Hasan

<p>This paper documents an efficient, cost-effective and sustainable grid-connected electric vehicles (EVs) battery charger based on a buck converter to reduce the harmonics injected into the mains power line. To utilize the switching converter as an effective power factor controller (PFC), inverse sinusoidal pulse width modulation (ISPWM) signals have been applied. A mathematical relationship between the sending-end power factor and the duty ratio of the switching converter has been presented. To ensure the sustenance of the proposed method, a simulation model of the proposed battery charging system has been tested on PSIM simulation platform. The simulation results yield to a lossless charging system with a sending-end power factor close to unity. An experimental testbed comprising a 60 V battery bank of 100 A-h capacity with a charging current of 7 A has been generated. The laboratory assessments present an 88.1% efficient charging prototype with a resultant sending-end power factor of 0.89. The laboratory framework concerns with the comparative analysis of the power efficiency, sending-end power factor and lines current total harmonic distortion (THD) values obtained for different charging methods and the evaluations corroborate the reliability of the proposed work.</p>


2020 ◽  
Vol 1 (1) ◽  
pp. 44-74
Author(s):  
Blake Troise

The 1-bit sonic environment (perhaps most famously musically employed on the ZX Spectrum) is defined by extreme limitation. Yet, belying these restrictions, there is a surprisingly expressive instrumental versatility. This article explores the theory behind the primary, idiosyncratically 1-bit techniques available to the composer-programmer, those that are essential when designing “instruments” in 1-bit environments. These techniques include pulse width modulation for timbral manipulation and means of generating virtual polyphony in software, such as the pin pulse and pulse interleaving techniques. These methodologies are considered in respect to their compositional implications and instrumental applications.


2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document