Developing Hydrogen (H2) Specification Guidelines for Proton Exchange Membrane (PEM) Fuel Cell Vehicles

Author(s):  
Stella Papasavva ◽  
Chris Sloane ◽  
Fred Wagner ◽  
Mike Steele ◽  
Gerald Voecks ◽  
...  
2021 ◽  
Vol 11 (14) ◽  
pp. 6348
Author(s):  
Zijun Yang ◽  
Bowen Wang ◽  
Xia Sheng ◽  
Yupeng Wang ◽  
Qiang Ren ◽  
...  

The dead-ended anode (DEA) and anode recirculation operations are commonly used to improve the hydrogen utilization of automotive proton exchange membrane (PEM) fuel cells. The cell performance will decline over time due to the nitrogen crossover and liquid water accumulation in the anode. Highly efficient prediction of the short-term degradation behaviors of the PEM fuel cell has great significance. In this paper, we propose a data-driven degradation prediction method based on multivariate polynomial regression (MPR) and artificial neural network (ANN). This method first predicts the initial value of cell performance, and then the cell performance variations over time are predicted to describe the degradation behaviors of the PEM fuel cell. Two cases of degradation data, the PEM fuel cell in the DEA and anode recirculation modes, are employed to train the model and demonstrate the validation of the proposed method. The results show that the mean relative errors predicted by the proposed method are much smaller than those by only using the ANN or MPR. The predictive performance of the two-hidden-layer ANN is significantly better than that of the one-hidden-layer ANN. The performance curves predicted by using the sigmoid activation function are smoother and more realistic than that by using rectified linear unit (ReLU) activation function.


Author(s):  
Utku Gulan ◽  
Hasmet Turkoglu ◽  
Irfan Ar

In this study, the fluid flow and cell performance in cathode side of a proton exchange membrane (PEM) fuel cell were numerically analyzed. The problem domain consists of cathode gas channel, cathode gas diffusion layer, and cathode catalyst layer. The equations governing the motion of air, concentration of oxygen, and electrochemical reactions were numerically solved. A computer program was developed based on control volume method and SIMPLE algorithm. The mathematical model and program developed were tested by comparing the results of numerical simulations with the results from literature. Simulations were performed for different values of inlet Reynolds number and inlet oxygen mole fraction at different operation temperatures. Using the results of these simulations, the effects of these parameters on the flow, oxygen concentration distribution, current density and power density were analyzed. The simulations showed that the oxygen concentration in the catalyst layer increases with increasing Reynolds number and hence the current density and power density of the PEM fuel cell also increases. Analysis of the data obtained from simulations also shows that current density and power density of the PEM fuel cell increases with increasing operation temperature. It is also observed that increasing the inlet oxygen mole fraction increases the current density and power density.


2006 ◽  
Vol 4 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Alessandra Perna

The purpose of this work is to investigate, by a thermodynamic analysis, the effects of the process variables on the performance of an autothermal reforming (ATR)-based fuel processor, operating on ethanol as fuel, integrated into an overall proton exchange membrane (PEM) fuel cell system. This analysis has been carried out finding the better operating conditions to maximize hydrogen yield and to minimize CO carbon monoxide production. In order to evaluate the overall efficiency of the system, PEM fuel cell operations have been analyzed by an available parametric model.


Author(s):  
Zhongying Shi ◽  
Xia Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


Author(s):  
Z. Shi ◽  
X. Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two-dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


2020 ◽  
Author(s):  
Peng Cheng ◽  
Chasen Tongsh ◽  
Jinqiao Liang ◽  
Zhi Liu ◽  
Qing Du ◽  
...  

Abstract In this study, an experimental study has been performed to investigate the effect of in-plane distribution of Pt and Nafion in membrane electrode assembly (MEA) on proton exchange membrane (PEM) fuel cell. Two types of MEAs, such as the gradient and uniform distributions of Pt catalyst and Nafion, are compared under various operating conditions including cathode flow rate, MEA preparation method, Pt loading and relative humidity (RH). The catalyst ink is sprayed onto Nafion membrane or gas diffusion layer (GDL) through a pneumatic automatic spraying device manufactured by ourselves. MEA is prepared by hot pressing. The results show that as flow rate decreases, the MEA with gradient distribution will show a higher voltage at a high current density for catalyst coated membrane (CCM) method. For CCM method, gradient distribution can optimize cell performance under low cathode flow rate, but the optimization effect is weakened when flow rate is too low. Compared with CCM method, the gas diffusion electrode (GDE) method makes the difference value of Ohmic resistance between gradient and uniform distribution very larger, resulting in poor performance improvement. For GDE method, gradient distribution shows no optimization for cell performance under different Pt loadings and RH, but a smaller average Pt loading and fully-humidified reactants can reduce the performance distinction between uniform and gradient distribution. The gradient design of Pt and Nafion along the in-plane direction is a promising strategy to improve the performance of PEM fuel cell. Reasonably controlling the gradient distribution of Pt in the plane direction of cathode can reduce the amount of Pt catalysts and improve efficiency.


2001 ◽  
Author(s):  
Daisie D. Boettner ◽  
Gino Paganelli ◽  
Yann G. Guezennec ◽  
Giorgio Rizzoni ◽  
Michael J. Moran

Abstract This paper describes a Proton Exchange Membrane (PEM) fuel cell system model for automotive applications that includes an air compressor, cooling system, and other auxiliaries. The fuel cell system model has been integrated into a vehicle performance simulator that determines fuel economy and allows consideration of control strategies. Significant fuel cell system efficiency improvements may be possible through control of the air compressor and other auxiliaries. Fuel cell system efficiency results are presented for two limiting air compressor cases: ideal control and no control. Extension of the present analysis to hybrid configurations consisting of a fuel cell system and battery is currently under study.


2019 ◽  
Vol 5 (1) ◽  
pp. 271-282 ◽  
Author(s):  
Bin Du ◽  
Richard Pollard ◽  
Manikand Ramani ◽  
Paul Graney ◽  
John F. Elter

Sign in / Sign up

Export Citation Format

Share Document