Effect of Exhaust Gas Recirculation on Exhaust Emissions from Diesel Engines Fuelled with Biodiesel

Author(s):  
Daisuke Kawano ◽  
Hajime Ishii ◽  
Yuichi Goto ◽  
Akira Noda ◽  
Yuzo Aoyagi
MTZ worldwide ◽  
2007 ◽  
Vol 68 (12) ◽  
pp. 21-23
Author(s):  
Thomas Holzbaur ◽  
Eike Willers ◽  
Achim Hess ◽  
Hans-Peter Klein ◽  
Markus Schuessler ◽  
...  

2014 ◽  
Vol 663 ◽  
pp. 331-335 ◽  
Author(s):  
Amin Mahmoudzadeh Andwari ◽  
Azhar Abdul Aziz ◽  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff

A new kind of alternative combustion concept that has attracted attention intensively in recent years is called controlled auto-ignition (CAI) combustion. CAI combustion has been proposed and partially implemented with the aim of both improving the thermal efficiency of internal combustion engines, achieving cleaner exhaust emissions and lower cyclic variation. An experimental study is conducted through a CAI two-stroke cycle engine in order to investigate the influence of internal exhaust gas recirculation (In-EGR) and external exhaust gas recirculation (Ex-EGR) variation in relation to combustion cyclic variability and exhaust emissions characteristics. Results implied that cyclic variation of both combustion-related and pressure-related parameter is substantially improved. Furthermore remarkable decreased exhaust emissions, unburned hydrocarbon (uHC), carbon monoxide (CO) and nitric dioxide (NOX), was observed.


Author(s):  
Fengjun Yan ◽  
Junmin Wang

Fueling control in Diesel engines is not only of significance to the combustion process in one particular cycle, but also influences the subsequent dynamics of air-path loop and combustion events, particularly when exhaust gas recirculation (EGR) is employed. To better reveal such inherently interactive relations, this paper presents a physics-based, control-oriented model describing the dynamics of the intake conditions with fuel injection profile being its input for Diesel engines equipped with EGR and turbocharging systems. The effectiveness of this model is validated by comparing the predictive results with those produced by a high-fidelity 1-D computational GT-Power engine model.


MTZ worldwide ◽  
2008 ◽  
Vol 69 (2) ◽  
pp. 20-26 ◽  
Author(s):  
Stefan Münz ◽  
Christiane Römuss ◽  
Peter Schmidt ◽  
Kai-Henning Brune ◽  
Heinz-Peter Schiffer

MTZ worldwide ◽  
2006 ◽  
Vol 67 (1) ◽  
pp. 6-9
Author(s):  
Dirk Bergmann ◽  
Christian Philipp ◽  
Helmut Rall ◽  
Rolf Traub

Sign in / Sign up

Export Citation Format

Share Document