Effects of Fuel Injection Parameters on Low Temperature Diesel Combustion Stability

Author(s):  
Shenghui Cong ◽  
Gordon McTaggart-Cowan ◽  
Colin Garner
Author(s):  
G. P. McTaggart-Cowan ◽  
S. Cong ◽  
C. P. Garner ◽  
E. Wahab ◽  
M. Peckham

This work elucidated which engine operating parameters have the greatest influence on Low temperature diesel combustion (LTC) and emissions. Key parameters were selected and evaluated at low and intermediate speed and load conditions using fractional factorial and Taguchi orthogonal experimental designs. The variations investigated were: about ± 5% in EGR rate, fuel injection quantity and engine speed respectively; and ± 10 °C in intake charge temperature. The half-fractional factorial results showed that the interactions among these parameters were negligible for a specific load/speed point. The Taguchi orthogonal method could be used as an efficient DoE tool for studying the multi-parameter ‘small-scale transients’ that a diesel engine would be likely to encounter when operating in LTC modes. LTC showed the most significant sensitivity to EGR rate variations, where an increase from 60% to 63% in EGR rate doubled THC and CO emissions and reduced combustion stability. LTC was also sensitive to the fuel injection quantity with an increase in injected mass lowering the overall oxygen-fuel ratio and thereby increasing THC and CO emissions. These two parameters influenced the oxygen concentration in the intake charge; which was identified to be a decisive parameter for the LTC combustion and emissions. Intake charge temperature affected the total charge quantity trapped in the cylinder and showed noticeable influence on CO emissions for the low speed intermediate load condition. Variations in engine speed showed a negligible influence on the LTC combustion processes and emissions.


Author(s):  
V. Ravaglioli ◽  
F. Ponti ◽  
F. Carra ◽  
M. De Cesare

Over the past years, the increasingly stringent emission regulations for Internal Combustion Engines (ICE) spawned a great amount of research in the field of combustion control optimization. Nowadays, optimal combustion control has become crucial, especially to properly manage innovative Low Temperature Combustion (LTC) strategies, usually characterized by high instability, cycle-to-cycle variability and sensitivity to slight variations of injection parameters and thermal conditions. Many works demonstrate that stability and maximum efficiency of LTC strategies can be guaranteed using closed-loop control strategies that vary the standard injection parameters (mapped during the base calibration activity) to keep engine torque and center of combustion (CA50) approximately equal to their target values. However, the combination of standard base calibration and closed-loop control is usually not sufficient to accurately control Low Temperature Combustions in transient conditions. As a matter of fact, to properly manage LTC strategies in transient conditions it is usually necessary to investigate the combustion methodology of interest and implement specific functions that provide an accurate feed-forward contribution to the closed-loop controller. This work presents the experimental analysis performed running a light-duty compression ignited engine in dual-fuel RCCI mode, the goal being to highlight the way injection parameters and charge temperature affect combustion stability and ignition delay. Finally, the paper describes how the obtained results can be used to define the optimal injections strategy in the analyzed operating points, i.e. the combination of injection parameters to be used as a feed-forward for a closed-loop combustion control strategy.


1991 ◽  
Author(s):  
Shigeru Shundoh ◽  
Toshiaki Kakegawa ◽  
Kinji Tsujimura ◽  
Shinji Kobayashi

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ikhtedar Husain Rizvi ◽  
Rajesh Gupta

AbstractTightening noose on engine emission norms compelled manufacturers globally to design engines with low emission specially NOx and soot without compromising their performance. Amongst various parameters, shape of piston bowls, injection pressure and nozzle diameter are known to have significant influence over the thermal performance and emission emanating from the engine. This paper investigates the combined effect of fuel injection parameters such as pressure at which fuel is injected and the injection nozzle size along with shape of piston bowl on engine emission and performance. Numerical simulation is carried out using one cylinder naturally aspirated diesel engine using AVL FIRE commercial code. Three geometries of piston bowls with different tumble and swirl characteristics are considered while maintaining the volume of piston bowl, compression ratio, engine speed and fuel injected mass constant along with equal number of variations for injection nozzle size and pressures for this analysis. The investigation corroborates that high swirl and large turbulence kinetic energy (TKE) are crucial for better combustion. TKE and equivalence ratio also increased as the injection pressure increases during the injection period, hence, enhances combustion and reduces soot formation. Increase in nozzle diameter produces higher TKE and equivalence ratio, while CO and soot emission are found to be decreasing and NOx formation to be increasing. Further, optimization is carried out for twenty-seven cases created by combining fuel injection parameters and piston bowl geometries. The case D2H1P1 (H1 = 0.2 mm, P1 = 200 bar) found to be an optimum case because of its lowest emission level with slightly better performance.


Sign in / Sign up

Export Citation Format

Share Document