Design of an Optimal Control Strategy in a Parallel Hybrid Vehicle in Order to Simultaneously Reduce Fuel Consumption and Emissions

Author(s):  
Mojtaba Dorri ◽  
Amir H. Shamekhi
2013 ◽  
Vol 380-384 ◽  
pp. 467-471
Author(s):  
Xiao Hua Zeng ◽  
Ge Bai ◽  
Jin Xin Wang ◽  
Zhen Ping Zhou

In this paper, the instantaneous optimal control strategy of parallel hybrid loader is presented. The aim is to achieve the real time optimal allocation of internal combustion engine (ICE) torque and motor torque in any driving cycle for loader. Thus, all combinations of the ICE torque and the motor torque is determined in any demand torque. Then integrated instantaneous fuel consumption (IIFC) is calculated as a target function, by establishing the equivalent relationship between the electric energy consumption of battery and the fuel consumption, which is converted to the electric energy. When the minimum integrated instantaneous fuel consumption is found, the instantaneous optimal allocation of ICE torque and the motor torque is achieved. Finally in order to verify the functionality of the control strategy, the vehicle and the control algorithm co-simulation model is built on AMESim and Matlab/Simulink platforms. The simulation results show that the strategy is able to improve the fuel economy by more than 10% while ensuring the vehicle power performance.


2013 ◽  
Vol 753-755 ◽  
pp. 1659-1664
Author(s):  
Jun Yan

To reduce the fuel consumption and exhaust (HC, CO) emissions of parallel hybrid electric vehicle, the control strategy of the hybrid electric vehicle is studied in this paper. First it briefly analyzes the structure and working principle of the parallel hybrid electric vehicle drive system. Then a cost function is proposed which explains the fuel consumption and emissions. According to the minimum principle the minimum of the cost function can be got, consequently, the optimal control strategy can be obtained. Furthermore, in order to verify the effectiveness of the optimal control strategy, in MATLAB environment, it establishes a dynamic simulation model for hybrid electric vehicles. Through a comparative study between the optimal control strategy on and the traditional rules control strategy, the results of experiment it reveals that the optimal control strategy can effectively reduces fuel consumption and emissions of hybrid electric vehicles.


Author(s):  
Amir Poursamad

This paper presents gain scheduling of control strategy for parallel hybrid electric vehicles based on the traffic condition. Electric assist control strategy (EACS) is employed with different parameters for different traffic conditions. The parameters of the EACS are optimized and scheduled for different traffic conditions of TEH-CAR driving cycle. TEH-CAR is a driving cycle which is developed based on the experimental data collected from the real traffic condition in the city of Tehran. The objective of the optimization is to minimize the fuel consumption and emissions over the driving cycle, while enhancing or maintaining the driving performance characteristics of the vehicle. Genetic algorithm (GA) is used to solve the optimization problem and the constraints are handled by using penalty functions. The results from the computer simulation show the effectiveness of the approach and reduction in fuel consumption and emissions, while ensuring that the vehicle performance is not sacrificed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yuan Zou ◽  
Hou Shi-jie ◽  
Li Dong-ge ◽  
Gao Wei ◽  
Xiao-song Hu

A heavy-duty parallel hybrid electric truck is modeled, and its optimal energy control is studied in this paper. The fundamental architecture of the parallel hybrid electric truck is modeled feed-forwardly, together with necessary dynamic features of subsystem or components. Dynamic programming (DP) technique is adopted to find the optimal control strategy including the gear-shifting sequence and the power split between the engine and the motor subject to a battery SOC-sustaining constraint. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement on the fuel economy can be achieved in the heavy-duty vehicle cycle from the natural driving statistics.


Author(s):  
J-P Gao ◽  
G-M G Zhu ◽  
E G Strangas ◽  
F-C Sun

Improvements in hybrid electric vehicle fuel economy with reduced emissions strongly depend on their supervisory control strategy. In order to develop an efficient real-time supervisory control strategy for a series hybrid electric bus, the proposed equivalent fuel consumption optimal control strategy is compared with two popular strategies, thermostat and power follower, using backward simulations in ADVISOR. For given driving cycles, global optimal solutions were also obtained using dynamic programming to provide an optimization target for comparison purposes. Comparison simulations showed that the thermostat control strategy optimizes the operation of the internal combustion engine and the power follower control strategy minimizes the battery charging and discharging operations which, hence, reduces battery power loss and extends the battery life. The equivalent fuel consumption optimal control strategy proposed in this paper provides an overall system optimization between the internal combustion engine and battery efficiencies, leading to the best fuel economy.


2013 ◽  
Vol 712-715 ◽  
pp. 1221-1225 ◽  
Author(s):  
Kai Yu ◽  
Chang Qing Song ◽  
Lu Yan Fan ◽  
Hao Qin

Recently, due to the reduction of oil and the deterioration of environment, people raised higher request for fuel economy and emissions, hybrid vehicle developed rapidly in most countries because of its low fuel consumption and emissions. In order to develop appropriate hybrid system, the text builds the model of prototype bus in the AVL-Cruise platform first, and then, establishes the model of PHB and accomplishes the control strategy of vehicle in the MATLAB/SIMULINK environment. The simulation data indicates: PHB can improve the fuel economy and emission performance effectively with guaranteeing a good dynamic performance of bus.


Sign in / Sign up

Export Citation Format

Share Document