Numerical Modeling of the Impingement Process of Urea-Water Solution Spray on the Heated Walls of SCR Systems

Author(s):  
Ehab Abu-Ramadan ◽  
Kaushik Saha ◽  
Xianguo Li
2007 ◽  
Author(s):  
T. Campbell ◽  
B. de Sonneville ◽  
L. Benedet ◽  
D. J. W. Walstra ◽  
C. W. Finkl

Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


2020 ◽  
pp. 139-143

Natural dyes were followed and prepared from a pomegranate, purple carrot, and eggplant peel. The absorbance spectra was measured in the wavelength range 300-800 nm. The linear properties measurements of the prepared natural dye freestanding films were determined include absorption coefficient (α0), extinction coefficient (κ), and linear refraction index (n). The nonlinear refractive index n2 and nonlinear absorption coefficient β2 of the natural dyes in the water solution were measured by the optical z-scan technique under a pumped solid state laser at a laser wavelength of 532 nm. The results indicated that the pomegranate dye can be promising candidates for optical limiting applications with significantly low optical limiting of 3.5 mW.


2015 ◽  
Vol 35 ◽  
pp. 232-235 ◽  
Author(s):  
Leonardo Piccinini ◽  
Paolo Fabbri ◽  
Marco Pola ◽  
Enrico Marcolongo ◽  
Alessia Rosignoli

2016 ◽  
Vol 41 ◽  
pp. 10-13 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Silvia Lombi ◽  
Alessandra Piana

2015 ◽  
Vol 37 (2) ◽  
pp. 179-185 ◽  
Author(s):  
О.O. Brovko ◽  
◽  
L.A. Gorbach ◽  
О.D. Lutsyk ◽  
L.M. Sergeeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document