Semi-Premixed Diesel Combustion with Twin Peak Shaped Heat Release Using Two-Stage Fuel Injection

Author(s):  
Hideyuki Ogawa ◽  
Gen Shibata ◽  
Yuhei Sakane ◽  
Tatsuaki Arisawa ◽  
Tatstunori Obe
2017 ◽  
Vol 19 (2) ◽  
pp. 214-229 ◽  
Author(s):  
Daniel Neumann ◽  
Christian Jörg ◽  
Nils Peschke ◽  
Joschka Schaub ◽  
Thorsten Schnorbus

The complexity of the development processes for advanced diesel engines has significantly increased during the last decades. A further increase is to be expected, due to more restrictive emission legislations and new certification cycles. This trend leads to a higher time exposure at engine test benches, thus resulting in higher costs. To counter this problem, virtual engine development strategies are being increasingly used. To calibrate the complete powertrain and various driving situations, model in the loop and hardware in the loop concepts have become more important. The main effort in this context is the development of very accurate but also real-time capable engine models. Besides the correct modeling of ambient condition and driver behavior, the simulation of the combustion process is a major objective. The main challenge of modeling a diesel combustion process is the description of mixture formation, self-ignition and combustion as precisely as possible. For this purpose, this article introduces a novel combustion simulation approach that is capable of predicting various combustion properties of a diesel process. This includes the calculation of crank angle resolved combustion traces, such as heat release and other thermodynamic in-cylinder states. Furthermore, various combustion characteristics, such as combustion phasing, maximum gradients and engine-out temperature, are available as simulation output. All calculations are based on a physical zero-dimensional heat release model. The resulting reduction of the calibration effort and the improved model robustness are the major benefits in comparison to conventional data-driven combustion models. The calibration parameters directly refer to geometric and thermodynamic properties of a given engine configuration. Main input variables to the model are the fuel injection profile and air path–related states such as exhaust gas recirculation rate and boost pressure. Thus, multiple injection event strategies or novel air path control structures for future engine control concepts can be analyzed.


2002 ◽  
Vol 124 (3) ◽  
pp. 660-667 ◽  
Author(s):  
K. Yamane ◽  
Y. Shimamoto

The objective of this study was to experimentally clarify the effect of two-stage split and early injection on the combustion and emission characteristics of a direct-injection (DI) diesel engine. Engine tests were carried out using a single-cylinder high-speed DI diesel engine and an injection system, combining an ordinary jerk pump and an electronically controlled high-pressure injection system, KD-3. In these experiments to compare the combustion and exhaust emission characteristics with two-stage split and early injection, a single-stage and early injection was tested. The FT-IR exhaust-gas analyzer simultaneously measured the exhaust emissions of 26 components. The results showed that HCHO, CH3CHO, and CH3COOH were emitted during the very early stage of both single injection and two-stage injection. These concentrations were higher than those from diesel combustion with ordinary fuel injection timings. These exhaust emissions are characteristic components of combustion by premixed compression ignition with extremely early injection. In particular, the HCHO concentration in exhaust was reduced with an increase in the maximum rate of heat release after cool flame due to pre-reaction of pre-mixture. At extremely early injection, the NOx concentration was extremely low; however, the indicated specific fuel consumption (ISFC) was higher than that of ordinary diesel combustion. In the case of two-stage injection, the degree of constant volume is increased, so that ISFC is improved. These results also demonstrated the possibility of reducing HCHO, NOx, and smoke emissions by means of two-stage split and early injection.


2021 ◽  
pp. 146808742110264
Author(s):  
Kazuki Inaba ◽  
Yanhe Zhang ◽  
Yoshimitsu Kobashi ◽  
Gen Shibata ◽  
Hideyuki Ogawa

Improvements of the thermal efficiency in twin shaped semi-premixed diesel combustion mode with premixed combustion in the primary stage and spray diffusive combustion in the secondary stage with multi-stage fuel injection were investigated with experiments and 3D-CFD analysis. For a better understanding of the advantages of this combustion mode, the results were compared with conventional diesel combustion modes, mainly consisting of diffusive combustion. The semi-premixed mode has a higher thermal efficiency than the conventional mode at both the low and medium load conditions examined here. The heat release in the semi-premixed mode is more concentrated at the top dead center, resulting in a significant reduction in the exhaust loss. The increase in the cooling loss is suppressed to a level similar to the conventional mode. In the conventional mode the rate of heat release becomes more rapid and the combustion noise increases with advances in the combustion phase as the premixed combustion with pilot and pre injections and the diffusive combustion with the main combustion occurs simultaneously. In the semi-premixed mode, the premixed combustion with pilot and primary injections and the diffusive combustion with the secondary injection occurs separately in different phases, maintaining a gentler heat release with advances in the combustion phase. The mechanism of the cooling loss suppression with the semi-premixed mode at low load was investigated with 3D-CFD. In the semi-premixed mode, there is a reduction in the gas flow and quantity of the combustion gas near the piston wall due to the suppression of spray penetration and splitting of the injection, resulting in a smaller heat flux.


2018 ◽  
Vol 20 (5) ◽  
pp. 540-554 ◽  
Author(s):  
Gen Shibata ◽  
Hideyuki Ogawa ◽  
Yasumasa Amanuma ◽  
Yuki Okamoto

The reduction of diesel combustion noise by multiple fuel injections maintaining high indicated thermal efficiency is an object of the research reported in this article. There are two aspects of multiple fuel injection effects on combustion noise reduction. One is the reduction of the maximum rate of pressure rise in each combustion, and the other is the noise reduction effects by the noise canceling spike combustion. The engine employed in the simulations and experiments is a supercharged, single-cylinder direct-injection diesel engine, with a high pressure common rail fuel injection system. Simulations to calculate the combustion noise and indicated thermal efficiency from the approximated heat release by Wiebe functions were developed. In two-stage high temperature heat release combustion, the combustion noise can be reduced; however, the combustion noise in amplification frequencies must be reduced to achieve further combustion noise reduction, and an additional heat release was added ahead of the two-stage high temperature heat release combustion in Test 1. The simulations of the resulting three-stage high temperature heat release combustion were conducted by changing the heating value of the first heat release. In Test 2 where the optimum heat release shape for low combustion noise and high indicated thermal efficiency was investigated and the role of each of the heat releases in the three-stage high temperature heat release combustion was discussed. In Test 3, a genetic-based algorithm method was introduced to avoid the time-consuming loss and great care in preparing the calculations in Test 2, and the optimum heat release shape and frequency characteristics for combustion noise by the genetic-based algorithm method were speedily calculated. The heat release occurs after the top dead center, and the indicated thermal efficiency and overall combustion noise were 50.5% and 86.4 dBA, respectively. Furthermore, the optimum number of fuel injections and heat release shape of multiple fuel injections to achieve lower combustion noise while maintaining the higher indicated thermal efficiency were calculated in Test 4. The results suggest that the constant pressure combustion after the top dead center by multiple fuel injections is the better way to lower combustion noise; however, the excess fuel injected leads to a lower indicated thermal efficiency because the degree of constant volume becomes deteriorates.


2018 ◽  
Vol 20 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Kazuki Inaba ◽  
Yuto Ojima ◽  
Yosuke Masuko ◽  
Yoshimitsu Kobashi ◽  
Gen Shibata ◽  
...  

Thermal efficiency–related parameters in semi-premixed diesel combustion with a twin peak shaped heat release were experimentally investigated in a 0.55-L single-cylinder diesel engine. Here, the first heat release peak is realized with the premixed combustion at top dead center after the end of the first fuel injection with a sufficient ignition delay. The fuel injection quantity for the first combustion was maximized in a range to limit the rate of pressure rise below 0.6 MPa/°CA at 0.4 MPa IMEP, 0.8 MPa/°CA at 0.8 MPa IMEP, and 1.0 MPa/°CA at 1.3 MPa IMEP to ensure the large degree of constant volume heat release and to suppress smoke emissions. The second heat release peak is formed from the rate-controlled combustion with the second fuel injection immediately after the end of the first combustion. The influence of the intake oxygen concentration and the intake gas pressure on the thermal efficiency and the exhaust gas emissions was systematically examined at three load conditions (indicated mean effective pressure ≈0.4, 0.8, and 1.3 MPa). The results with two types of combustion chambers, a toroidal chamber expecting smaller cooling losses with weaker in-cylinder gas motion, and with a re-entrant chamber expecting better air utilization with stronger in-cylinder gas motion are compared. At the medium load, a significantly high indicated thermal efficiency exceeding 50% is established with a reduction in the intake oxygen concentration due to the smaller cooling loss. The indicated thermal efficiency improves with a decrease in the intake oxygen concentration as the reduction in the cooling loss is more significant than the increase in the exhaust loss. However, an excessive reduction in the intake oxygen concentration results in a deterioration in the indicated thermal efficiency due to a reduction in the combustion efficiency. At low load conditions, the indicated thermal efficiency is lower than at the medium load due to lower combustion efficiency and the improvement in the indicated thermal efficiency with reductions in the intake oxygen concentration is not significant as the combustion efficiency decreases with the decrease in the intake oxygen concentration. At the high load condition, the indicated thermal efficiency is lower due to a larger exhaust loss than at the low and medium load conditions and the indicated thermal efficiency decreases with the decrease in the intake oxygen concentration. With an increase in the intake gas pressure, the indicated thermal efficiency increases consistently mainly due to the reducing cooling loss. In comparison with the re-entrant combustion chamber, the indicated thermal efficiency with the toroidal combustion chamber is 1% higher due to a smaller cooling loss at the low load, almost comparable at the medium load and 1.2% lower at the high load due to the larger exhaust loss.


2020 ◽  
Vol 105 ◽  
pp. 106062 ◽  
Author(s):  
Jiang Li ◽  
Gen Zhu ◽  
Shikong Zhang ◽  
Oupeng Yan ◽  
Weipeng Li ◽  
...  
Keyword(s):  

Author(s):  
Peter G. Dowell ◽  
Sam Akehurst ◽  
Richard D. Burke

To meet the increasingly stringent emissions standards, diesel engines need to include more active technologies with their associated control systems. Hardware-in-the-loop (HiL) approaches are becoming popular where the engine system is represented as a real-time capable model to allow development of the controller hardware and software without the need for the real engine system. This paper focusses on the engine model required in such approaches. A number of semi-physical, zero-dimensional combustion modeling techniques are enhanced and combined into a complete model, these include—ignition delay, premixed and diffusion combustion and wall impingement. In addition, a fuel injection model was used to provide fuel injection rate from solenoid energizing signals. The model was parameterized using a small set of experimental data from an engine dynamometer test facility and validated against a complete data set covering the full engine speed and torque range. The model was shown to characterize the rate of heat release (RoHR) well over the engine speed and load range. Critically, the wall impingement model improved R2 value for maximum RoHR from 0.89 to 0.96. This was reflected in the model's ability to match both pilot and main combustion phasing, and peak heat release rates derived from measured data. The model predicted indicated mean effective pressure and maximum pressure with R2 values of 0.99 across the engine map. The worst prediction was for the angle of maximum pressure which had an R2 of 0.74. The results demonstrate the predictive ability of the model, with only a small set of empirical data for training—this is a key advantage over conventional methods. The fuel injection model yielded good results for predicted injection quantity (R2 = 0.99) and enabled the use of the RoHR model without the need for measured rate of injection.


Sign in / Sign up

Export Citation Format

Share Document