scholarly journals Experimental investigation of hydraulic effects of two-stage fuel injection on fuel-injection systems and diesel combustion in a high-speed optical common-rail diesel engine

2012 ◽  
Vol 15 (1) ◽  
pp. 48-65 ◽  
Author(s):  
Mohammad Reza Herfatmanesh ◽  
Hua Zhao
2002 ◽  
Vol 124 (3) ◽  
pp. 660-667 ◽  
Author(s):  
K. Yamane ◽  
Y. Shimamoto

The objective of this study was to experimentally clarify the effect of two-stage split and early injection on the combustion and emission characteristics of a direct-injection (DI) diesel engine. Engine tests were carried out using a single-cylinder high-speed DI diesel engine and an injection system, combining an ordinary jerk pump and an electronically controlled high-pressure injection system, KD-3. In these experiments to compare the combustion and exhaust emission characteristics with two-stage split and early injection, a single-stage and early injection was tested. The FT-IR exhaust-gas analyzer simultaneously measured the exhaust emissions of 26 components. The results showed that HCHO, CH3CHO, and CH3COOH were emitted during the very early stage of both single injection and two-stage injection. These concentrations were higher than those from diesel combustion with ordinary fuel injection timings. These exhaust emissions are characteristic components of combustion by premixed compression ignition with extremely early injection. In particular, the HCHO concentration in exhaust was reduced with an increase in the maximum rate of heat release after cool flame due to pre-reaction of pre-mixture. At extremely early injection, the NOx concentration was extremely low; however, the indicated specific fuel consumption (ISFC) was higher than that of ordinary diesel combustion. In the case of two-stage injection, the degree of constant volume is increased, so that ISFC is improved. These results also demonstrated the possibility of reducing HCHO, NOx, and smoke emissions by means of two-stage split and early injection.


Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


Sign in / Sign up

Export Citation Format

Share Document