scholarly journals Optimization of multiple heat releases in pre-mixed diesel engine combustion for high thermal efficiency and low combustion noise by a genetic-based algorithm method

2018 ◽  
Vol 20 (5) ◽  
pp. 540-554 ◽  
Author(s):  
Gen Shibata ◽  
Hideyuki Ogawa ◽  
Yasumasa Amanuma ◽  
Yuki Okamoto

The reduction of diesel combustion noise by multiple fuel injections maintaining high indicated thermal efficiency is an object of the research reported in this article. There are two aspects of multiple fuel injection effects on combustion noise reduction. One is the reduction of the maximum rate of pressure rise in each combustion, and the other is the noise reduction effects by the noise canceling spike combustion. The engine employed in the simulations and experiments is a supercharged, single-cylinder direct-injection diesel engine, with a high pressure common rail fuel injection system. Simulations to calculate the combustion noise and indicated thermal efficiency from the approximated heat release by Wiebe functions were developed. In two-stage high temperature heat release combustion, the combustion noise can be reduced; however, the combustion noise in amplification frequencies must be reduced to achieve further combustion noise reduction, and an additional heat release was added ahead of the two-stage high temperature heat release combustion in Test 1. The simulations of the resulting three-stage high temperature heat release combustion were conducted by changing the heating value of the first heat release. In Test 2 where the optimum heat release shape for low combustion noise and high indicated thermal efficiency was investigated and the role of each of the heat releases in the three-stage high temperature heat release combustion was discussed. In Test 3, a genetic-based algorithm method was introduced to avoid the time-consuming loss and great care in preparing the calculations in Test 2, and the optimum heat release shape and frequency characteristics for combustion noise by the genetic-based algorithm method were speedily calculated. The heat release occurs after the top dead center, and the indicated thermal efficiency and overall combustion noise were 50.5% and 86.4 dBA, respectively. Furthermore, the optimum number of fuel injections and heat release shape of multiple fuel injections to achieve lower combustion noise while maintaining the higher indicated thermal efficiency were calculated in Test 4. The results suggest that the constant pressure combustion after the top dead center by multiple fuel injections is the better way to lower combustion noise; however, the excess fuel injected leads to a lower indicated thermal efficiency because the degree of constant volume becomes deteriorates.

2019 ◽  
Vol 9 (3) ◽  
pp. 484 ◽  
Author(s):  
Giorgio Zamboni

Indicated pressure diagrams were measured during experimental campaigns on the control of fuel injection, turbocharging and hybrid exhaust gas recirculation systems in an automotive downsized diesel engine. Three-part load operating conditions were selected for four test sets, where strategies aimed at the reduction of NOX emissions and fuel consumption, limiting penalties in soot emissions and combustion noise were applied to the selected systems. Processing of in-cylinder pressure signal, its first derivative and curves of the rate of heat release allowed us to evaluate seven parameters related to the combustion centre and duration, maximum values of pressure, heat release and its first derivative, heat released in the premixed phase and a combustion noise indicator. Relationships between these quantities and engine operating, energy and environmental parameters were then obtained by referring to the four test sets. In the paper, the most significant links are presented and discussed, aiming at a better understanding of the influence of control variables on the combustion process and the effects on engine behaviour. The proposed methodology proved to be a consistent tool for this analysis, useful for supporting the application of alternative fuels or advanced combustion modes.


2021 ◽  
pp. 146808742110264
Author(s):  
Kazuki Inaba ◽  
Yanhe Zhang ◽  
Yoshimitsu Kobashi ◽  
Gen Shibata ◽  
Hideyuki Ogawa

Improvements of the thermal efficiency in twin shaped semi-premixed diesel combustion mode with premixed combustion in the primary stage and spray diffusive combustion in the secondary stage with multi-stage fuel injection were investigated with experiments and 3D-CFD analysis. For a better understanding of the advantages of this combustion mode, the results were compared with conventional diesel combustion modes, mainly consisting of diffusive combustion. The semi-premixed mode has a higher thermal efficiency than the conventional mode at both the low and medium load conditions examined here. The heat release in the semi-premixed mode is more concentrated at the top dead center, resulting in a significant reduction in the exhaust loss. The increase in the cooling loss is suppressed to a level similar to the conventional mode. In the conventional mode the rate of heat release becomes more rapid and the combustion noise increases with advances in the combustion phase as the premixed combustion with pilot and pre injections and the diffusive combustion with the main combustion occurs simultaneously. In the semi-premixed mode, the premixed combustion with pilot and primary injections and the diffusive combustion with the secondary injection occurs separately in different phases, maintaining a gentler heat release with advances in the combustion phase. The mechanism of the cooling loss suppression with the semi-premixed mode at low load was investigated with 3D-CFD. In the semi-premixed mode, there is a reduction in the gas flow and quantity of the combustion gas near the piston wall due to the suppression of spray penetration and splitting of the injection, resulting in a smaller heat flux.


Author(s):  
Stephen Busch ◽  
Kan Zha ◽  
Alok Warey ◽  
Francesco Pesce ◽  
Richard Peterson

For a pilot-main injection strategy in a single cylinder light duty diesel engine, the dwell between the pilot- and main-injection events can significantly impact combustion noise. As the solenoid energizing dwell decreases below 200 μs, combustion noise decreases by approximately 3 dB and then increases again at shorter dwells. A zero-dimensional thermodynamic model has been developed to capture the combustion-noise reduction mechanism; heat-release profiles are the primary simulation input and approximating them as top-hat shapes preserves the noise-reduction effect. A decomposition of the terms of the underlying thermodynamic equation reveals that the direct influence of heat-release on the temporal variation of cylinder-pressure is primarily responsible for the trend in combustion noise. Fourier analyses reveal the mechanism responsible for the reduction in combustion noise as a destructive interference in the frequency range between approximately 1 kHz and 3 kHz. This interference is dependent on the timing of increases in cylinder-pressure during pilot heat-release relative to those during main heat-release. The mechanism by which combustion noise is attenuated is fundamentally different from the traditional noise reduction that occurs with the use of long-dwell pilot injections, for which noise is reduced primarily by shortening the ignition delay of the main injection. Band-pass filtering of measured cylinder-pressure traces provides evidence of this noise-reduction mechanism in the real engine. When this close-coupled pilot noise-reduction mechanism is active, metrics derived from cylinder-pressure such as the location of 50% heat-release, peak heat-release rates, and peak rates of pressure rise cannot be used reliably to predict trends in combustion noise. The quantity and peak value of the pilot heat-release affect the combustion noise reduction mechanism, and maximum noise reduction is achieved when the height and steepness of the pilot heat-release profile are similar to the initial rise of the main heat-release event. A variation of the initial rise-rate of the main heat-release event reveals trends in combustion noise that are the opposite of what would happen in the absence of a close-coupled pilot. The noise-reduction mechanism shown in this work may be a powerful tool to improve the tradeoffs among fuel efficiency, pollutant emissions, and combustion noise.


2019 ◽  
Vol 21 (4) ◽  
pp. 698-712
Author(s):  
Gen Shibata ◽  
Kohei Yamamoto ◽  
Mikito Saito ◽  
Yuto Inoue ◽  
Yasumasa Amanuma ◽  
...  

Pre-mixed diesel combustion has the potential of offering high thermal efficiency with low emissions; however, this may result in loud combustion noise because of the high maximum rate of pressure rise. Combustion noise and thermal efficiency work in a trade-off relation, and it has not been possible to achieve high thermal efficiency with low combustion noise, so far. Our laboratory has worked on combustion noise simulations calculated from the heat release history, and it is now possible to calculate a heat release shape for high thermal efficiency with low combustion noise. In this article, the objective of the research is the reduction of combustion noise by multiple fuel injections with high indicated thermal efficiency for a wide range of engine speeds and loads. The engine employed in the simulations and experiments is a supercharged, single-cylinder direct-injection diesel engine, with a high-pressure common rail fuel injection system. The heat release is approximated by Wiebe functions, and the combustion noise and indicated thermal efficiency are calculated in simulations. The engine operational range was divided into 12 conditions, four engine speed conditions each at three engine load conditions, and the optimum heat release shape for low combustion noise with high indicated thermal efficiency was calculated by a genetic-based algorithm method. The parameters for the genetic-based algorithm simulation were the number of injections, each injection timing, the heating value in each heat release, and the combustion period of each injection. The optimum heat release shape is a delta triangle (Δ)-shaped heat release (the heat release increase in the expansion stroke) with a high degree of constant volume for all conditions; however, the optimum number of heat releases and the injection timing are different depending on the engine speed and load conditions. The simulated results were confirmed by engine tests.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


2018 ◽  
Vol 21 (8) ◽  
pp. 1426-1440 ◽  
Author(s):  
Buyu Wang ◽  
Michael Pamminger ◽  
Ryan Vojtech ◽  
Thomas Wallner

Gasoline compression ignition using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low-temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high-temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high-temperature gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high-temperature gasoline compression ignition combustion with port and direct injection. Engine testing was conducted at an engine speed of 1038 r/min and brake mean effective pressure of 1.4 MPa for three injection strategies, late pilot injection, early pilot injection, and port/direct fuel injection. The impact on engine performance and emissions with respect to varying the combustion phasing were quantified within this study. At the same combustion phasing, early pilot injection and port/direct fuel injection had an earlier start of combustion and higher maximum pressure rise rates than late pilot injection attributable to more premixed fuel from pilot or port injection; however, brake thermal efficiencies were higher with late pilot injection due to reduced heat transfer. Early pilot injection also exhibited the highest cylinder-to-cylinder variations due to differences in injector behavior as well as the spray/wall interactions affecting mixing and evaporation process. Overall, peak brake thermal efficiency of 46.1% and 46% for late pilot injection and port/direct fuel injection was achieved comparable to diesel baseline (45.9%), while early pilot injection showed the lowest brake thermal efficiency (45.3%).


Sign in / Sign up

Export Citation Format

Share Document