Exhaust Gas Emissions and Engine Oil Interactions from a New Biobased Fuel Named Diesel R33

Author(s):  
Kristin Götz ◽  
Barbara Fey ◽  
Anja Singer ◽  
Juergen Krahl ◽  
Jürgen Bünger ◽  
...  
Author(s):  
T. O. Monz ◽  
M. Stöhr ◽  
W. O’Loughlin ◽  
J. Zanger ◽  
M. Hohloch ◽  
...  

A swirl stabilized MGT combustor (Turbec T100) was operated with natural gas and was experimentally characterized in two test rigs, a pressurized and optically accessible MGT test rig and an atmospheric combustor test rig. For the detailed characterization of the combustion processes, planar OH-PLIF and simultaneous 3D-stereo PIV measurements were performed in the atmospheric combustor test rig. Flow fields, reaction zones and exhaust gas emissions are reported for a range of pressure scaled MGT load points. Parameter studies on combustor inlet conditions (e.g. air preheating temperature, air and fuel mass flow rates and fuel split) were conducted in the atmospheric combustor test rig. From the parameters studies the fuel split between the pilot and the main stage and the air preheating temperature were found to have the biggest impact on the flame shape, flame stabilization and exhaust gas emissions. The measurements of the ATM test rig are compared with measurements of the pressurized MGT test rig with and without an optically accessible combustion chamber. Opened and closed conical flame and flow pattern were found in both test rigs. Reasons for the two flame and flow pattern are supposed to be the interaction of pilot stage combustion and flow field and the interaction of the dilution air with the combustion and the flow field. The results are discussed and compared with repect to a transferability of combustion characteristics from the ATM test rig to the MGT test rigs.


Sign in / Sign up

Export Citation Format

Share Document