Combustion Characteristics of Wall-Impinging Diesel Fuel Spray under Different Wall Temperatures

Author(s):  
Lei Feng ◽  
Beiling Chen ◽  
Haifeng Liu ◽  
Mingfa Yao ◽  
Chao Geng
2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Seung Hyun Yoon ◽  
Su Han Park ◽  
Hyun Kyu Suh ◽  
Chang Sik Lee

An experimental investigation was performed to analyze the effects of biodiesel-ethanol blended fuel spray on the combustion, and exhaust emission characteristics in a single cylinder common-rail diesel engine. In order to analyze the macroscopic and microscopic characteristics of biodiesel blended fuel spray, parameters, such as injection rate, droplet diameter, and spray tip penetration, were measured using an injection rate meter system, spray visualization, and droplet measuring system. Also, measurements of combustion, exhaust emissions, and size distributions of particulate matter were carried out under various engine operating conditions for biodiesel-ethanol blends and the results were compared with those of conventional diesel fuel. In this investigation, the measured results of biodiesel-ethanol blended fuel show that the Sauter mean diameter decreased with the increase of relative velocity between the injected fuel and the ambient gas. Comparing the combustion characteristics of diesel fuel and biodiesel-ethanol blended fuels, both diesel and blended fuel show similar trends of combustion pressure and rate of heat release. However, the combustion of biodiesel-ethanol blends indicated lower combustion characteristics, such as combustion pressures and heat release rates, than those of diesel fuel because of its lower heating value. In the case of exhaust gas recirculation, the indicated specific NOx(ISNOx) and soot concentration results showed lower emissions compared with those of conventional diesel fuel.


2017 ◽  
Vol 17 (17th International Conference) ◽  
pp. 1-15
Author(s):  
Aly Elzahaby ◽  
Medhat Elkelawy ◽  
Hagar Bastawissi ◽  
Saad El-Malla ◽  
Abdel Moneim Naceb

Fuel ◽  
2018 ◽  
Vol 220 ◽  
pp. 682-691 ◽  
Author(s):  
Hazrulzurina Suhaimi ◽  
Abdullah Adam ◽  
Anes G. Mrwan ◽  
Zuhaira Abdullah ◽  
Mohd. Fahmi Othman ◽  
...  

1995 ◽  
Author(s):  
P. H. Campbell ◽  
K. M. Sinko ◽  
B. Chehroudi
Keyword(s):  

Author(s):  
Darlington Njere ◽  
Nwabueze Emekwuru

The evolution of diesel fuel injection technology, to facilitate strong correlations of in-cylinder spray propagation with injection conditions and injector geometry, is crucial in facing emission challenges. More observations of spray propagation are, therefore, required to provide valuable information on how to ensure that all the injected fuel has maximum contact with the available air, to promote complete combustion and reduce emissions. In this study, high pressure diesel fuel sprays are injected into a constant-volume chamber at injection and ambient pressure values typical of current diesel engines. For these types of sprays the maximum fuel liquid phase penetration is different and reached sooner than the maximum fuel vapour phase penetration. Thus, the vapour fuel could reach the combustion chamber wall and could be convected and deflected by swirling air. In hot combustion chambers this impingement can be acceptable but this might be less so in larger combustion chambers with cold walls. The fuel-ambient mixture in vapourized fuel spray jets is essential to the efficient performance of these engines. For this work, the fuel vapour penetration values are presented for fuel injectors of different k-factors. The results indicate that the geometry of fuel injectors based on the k-factors appear to affect the vapour phase penetration more than the liquid phase penetration. This is a consequence of the effects of the injector types on the exit velocity of the fuel droplets.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4951


Author(s):  
Hyun Kyu Suh ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

The aim of this work is to investigate the effect of the blending ratio and pilot injection on the spray and combustion characteristics of biodiesel fuel and compare these factors with those of diesel fuel in a direct injection common-rail diesel engine. In order to study the factors influencing the spray and combustion characteristics of biodiesel fuel, experiments involving exhaust emissions and engine performance were conducted at various biodiesel blending ratios and injection conditions for engine operating conditions. The macroscopic and microscopic spray characteristics of biodiesel fuel, such as injection rate, split injection effect, spray tip penetration, droplet diameter, and axial velocity distribution, were compared with the results from conventional diesel fuel. For biodiesel blended fuel, it was revealed that a higher injection pressure is needed to achieve the same injection rate at a higher blending ratio. The spray tip penetration of biodiesel fuel was similar to that of diesel. The atomization characteristics of biodiesel show that it has higher Sauter mean diameter and lower spray velocity than conventional diesel fuel due to high viscosity and surface tension. The peak combustion pressures of diesel and blending fuel increased with advanced injection timing and the combustion pressure of biodiesel fuel is higher than that of diesel fuel. As the pilot injection timing is retarded to 15deg of BTDC that is closed by the top dead center, the dissimilarities of diesel and blending fuels combustion pressure are reduced. It was found that the pilot injection enhanced the deteriorated spray and combustion characteristics of biodiesel fuel caused by different physical properties of the fuel.


Sign in / Sign up

Export Citation Format

Share Document