External Aerodynamic Drag Coefficient Prediction of Full Scale Passenger Car Based on Scale Model Assessment

2019 ◽  
Author(s):  
Rohan Arun Gulavani ◽  
Sujit Chalipat ◽  
Amit Dighe ◽  
Faisal Anwar
Author(s):  
Zhiwei Li ◽  
Mingzhi Yang ◽  
Sha Huang ◽  
Dan Zhou

A moving model test method has been proposed to measure the aerodynamic drag coefficient of a high-speed train based on machine vision technology. The total resistance can be expressed as the track friction resistance and the aerodynamic drag according to Davis equation. Cameras are set on one side of the track to capture the pictures of the train, from which the line marks on the side surface of the train are extracted and analyzed to calculate the speed and acceleration of the train. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through multiple tests at different train speeds. Comparisons are carried out with the full-scale coasting test, wind tunnel test, and numerical simulation; good agreement is obtained between the moving model test and the full-scale field coasting test with difference within 1.51%, which verifies that the method proposed in this paper is feasible and reliable. This method can accurately simulate the relative movement between the train, air, and ground. The non-contact measurement characteristic will increase the test accuracy, providing a new experimental method for the aerodynamic measurement.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Shubham Singh ◽  
M. Zunaid ◽  
Naushad Ahmad Ansari ◽  
Shikha Bahirani ◽  
Sumit Dhall ◽  
...  

CFD simulations using ANSYS FLUENT 6.3.26 have been performed on a generic SUV design and the settings are validated using the experimental results investigated by Khalighi. Moreover, an add-on inspired by the concept presented by Englar at GTRI for drag reduction has been designed and added to the generic SUV design. CFD results of add-on model and the basic SUV model have been compared for a number of aerodynamic parameters. Also drag coefficient, drag force, mean surface pressure, mean velocities, and Cp values at different locations in the wake have been compared for both models. The main objective of the study is to present a new add-on device which may be used on SUVs for increasing the fuel efficiency of the vehicle. Mean pressure results show an increase in the total base pressure on the SUV after using the device. An overall reduction of 8% in the aerodynamic drag coefficient on the add-on SUV has been investigated analytically in this study.


2009 ◽  
Author(s):  
Christoffer Landstro¨m ◽  
Lasse Christoffersen ◽  
Lennart Lo¨fdahl

Future demands on passenger cars consist to a large extend of making them more energy efficient. Reducing the driving resistance by reducing the aerodynamic drag will be one important part in reducing fuel consumption. In most cases during passenger car development, early experimental investigations are performed in scale model wind tunnels. Considering that such models inevitably suffer from Reynolds number effects it is important to understand how this affects the test results. Investigations of the aerodynamics of a detailed scale model Volvo S60 have been performed in the aerodynamic wind tunnel at Chalmers University of Technology. The investigation aimed at increasing the understanding of how the flow field in scale model testing is affected by ground simulation and different cooling air flow configurations at different Reynolds numbers. A full width moving ground system was used in the experiments. Pressure taps were distributed between the cooling air inlets, the underbody and the vehicle base. An internal six component balance was used to measure global forces and moments. By combining the results from the measurements it was possible to increase the understanding of some of the local flow features. Results showed significant Reynolds number effects both with stationary ground as well as moving ground and rotating wheels. Global aerodynamic drag as well as front and rear axle lift was found to be affected.


2020 ◽  
Vol 56 (6) ◽  
pp. 1032-1039
Author(s):  
S. V. Mal’tsev ◽  
M. A. Semin ◽  
D. S. Kormshchikov

Sign in / Sign up

Export Citation Format

Share Document