scholarly journals Numerical Study of the Generic Sports Utility Vehicle Design with a Drag Reduction Add-On Device

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Shubham Singh ◽  
M. Zunaid ◽  
Naushad Ahmad Ansari ◽  
Shikha Bahirani ◽  
Sumit Dhall ◽  
...  

CFD simulations using ANSYS FLUENT 6.3.26 have been performed on a generic SUV design and the settings are validated using the experimental results investigated by Khalighi. Moreover, an add-on inspired by the concept presented by Englar at GTRI for drag reduction has been designed and added to the generic SUV design. CFD results of add-on model and the basic SUV model have been compared for a number of aerodynamic parameters. Also drag coefficient, drag force, mean surface pressure, mean velocities, and Cp values at different locations in the wake have been compared for both models. The main objective of the study is to present a new add-on device which may be used on SUVs for increasing the fuel efficiency of the vehicle. Mean pressure results show an increase in the total base pressure on the SUV after using the device. An overall reduction of 8% in the aerodynamic drag coefficient on the add-on SUV has been investigated analytically in this study.

Author(s):  
Anu R. Nair ◽  
Fred Barez ◽  
Ernie Thurlow ◽  
Metin Ozen

Heavy commercial vehicles due to their un-streamlined body shapes are aerodynamically inefficient due to higher fuel consumption as compared to passenger vehicles. The rising demand and use of fossil fuel escalate the amount of carbon dioxide emitted to the environment, thus more efficient tractor-trailer design becomes necessary to be developed. Fuel consumption can be reduced by either improving the driveline losses or by reducing the external forces acting on the truck. These external forces include rolling resistance and aerodynamic drag. When driving at most of the fuel is used to overcome the drag force, thus aerodynamic drag proves an area of interest to study to develop an efficient tractor-trailer design. Tractor-trailers are equipped with standard add-on components such as roof defectors, boat tails and side skirts. Modification of these components helps reduce drag coefficient and improve fuel efficiency. The objective of this study is to determine the most effective geometry of trailer add-on devices in semi-truck trailer design to reduce the drag coefficient to improve fuel efficiency and vehicle stability. The methodology consisted of CFD analysis on Mercedes Benz Actros using ANSYS FLUENT. The simulation was performed on the tractor-trailer at a speed of 30m/s. The analysis was performed with various types of add-on devices such as side skirts, boat tail and vortex generators. From the simulation results, it was observed that addition of tractor-trailer add-on devices proved beneficial over modifying trailer geometry. Combination of add-on devices in the trailer underbody, rear and front sections was more beneficial in reducing drag coefficient as compared to their individual application. Improving fuel efficiency by 17.74%. Stability of the tractor-trailer is improved due to the add-on devices creating a streamlined body and reducing the low-pressure region at the rear end of the trailer.


Author(s):  
Yiping Wang ◽  
Cheng Wu ◽  
Gangfeng Tan ◽  
Yadong Deng

Numerical investigations are carried out to investigate the reduction in the aerodynamic drag of a vehicle by employing a dimpled non-smooth surface. The computational scheme was validated by the experimental data reported in literature. The mechanism and the effect of the dimpled non-smooth surface on the drag reduction were revealed by analysing the flow field structure of the wake. In order to maximize the drag reduction performance of the dimpled non-smooth surface, an aerodynamic optimization method based on a Kriging surrogate model was employed to design the dimpled non-smooth surface. Four structure parameters were selected as the design variables, and a 16-level design-of-experiments method based on orthogonal arrays was used to analyse the sensitivities and the influences of the variables on the drag coefficient; a surrogate model was constructed from these. Then a multi-island genetic algorithm was employed to obtain the optimal solution for the surrogate model. Finally, the surrogate model and the simulation results showed that the optimal combination of design variables can reduce the aerodynamic drag coefficient by 5.20%.


2014 ◽  
Vol 602-605 ◽  
pp. 477-480
Author(s):  
Jing Yu Wang ◽  
Bao Yu Wang ◽  
Xing Jun Hu ◽  
Lei Liao

The principles and method of computational fluid dynamics were applied to numerical simulate the external flow field about the SUV model. The hybrid mesh of tetrahedral and triangular prismatic as well as the turbulence model of Realizable k-ε was adopted to study the flow field of SUV of flat underground. Then the SUV of complex underground was simulated with the same mesh strategy and boundary condition. The aerodynamic drag coefficient of latter was bigger than former. That illuminated the complex underground has affect to aerodynamic performance of vehicle. The wind tunnel test validated the veracity of numerical simulation. Based on that, the underground cover board was appended; the aerodynamic drag coefficient was depressed. The velocity and pressure distribution and flow line were achieved. The conclusions provide theoretical reference for the further study of aerodynamic drag reduction of complex underground.


2018 ◽  
Vol 220 ◽  
pp. 02001
Author(s):  
Himsar Ambarita ◽  
Munawir R Siregar

The present work deals with aerodynamic drag reduction of an urban-concept car for energy-efficient competition. Several modifications have been proposed to the original design of the urban-concept of the car. In order to investigate the effect of the proposed modifications numerical method has been developed. In the numerical method three-dimensional governing equations have been solved numerically. Turbulent flow is modeled using k-epsilon model. The two designs have been simulated at five different inlet velocities. The inlet velocity varies from 10 m/s to 20 m/s. The velocity contour, velocity vector and pressure distributions have been plotted. The results show that the proposed modifications improve the performance of the proposed design. At the given inlet velocities, the aerodynamic drag coefficient of the new design decreased 26.63 % in comparison with original design. It is recommended to modify the original design of the urban concept car by implementing the proposed modifications. The new design will improve the performance of the urban concept car.


2016 ◽  
Vol 846 ◽  
pp. 18-22
Author(s):  
Rohit Bhattacharya ◽  
Abouzar Moshfegh ◽  
Ahmad Jabbarzadeh

The flow over bluff bodies is separated compared to the flow over streamlined bodies. The investigation of the fluid flow over a cylinder with a streamwise slit has received little attention in the past, however there is some experimental evidence that show for turbulent regime it reduces the drag coefficient. This work helps in understanding the fluid flow over such cylinders in the laminar regime. As the width of the slit increases the drag coefficient keeps on reducing resulting in a narrower wake as compared to what is expected for flow over a cylinder. In this work we have used two different approaches in modelling a 2D flow for Re=10 to compare the results for CFD using finite volume method (ANSYS FLUENTTM) and Lattice Boltzmann methods. In all cases cylinders of circular cross section have been considered while slit width changing from 10% to 40% of the cylinder diameter. . It will be shown that drag coefficient decreases as the slit ratio increases. The effect of slit size on drag reduction is studied and discussed in detail in the paper. We have also made comparison of the results obtained from Lattice Boltzmann and finite volume methods.


Author(s):  
Zhiwei Li ◽  
Mingzhi Yang ◽  
Sha Huang ◽  
Dan Zhou

A moving model test method has been proposed to measure the aerodynamic drag coefficient of a high-speed train based on machine vision technology. The total resistance can be expressed as the track friction resistance and the aerodynamic drag according to Davis equation. Cameras are set on one side of the track to capture the pictures of the train, from which the line marks on the side surface of the train are extracted and analyzed to calculate the speed and acceleration of the train. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through multiple tests at different train speeds. Comparisons are carried out with the full-scale coasting test, wind tunnel test, and numerical simulation; good agreement is obtained between the moving model test and the full-scale field coasting test with difference within 1.51%, which verifies that the method proposed in this paper is feasible and reliable. This method can accurately simulate the relative movement between the train, air, and ground. The non-contact measurement characteristic will increase the test accuracy, providing a new experimental method for the aerodynamic measurement.


2016 ◽  
Vol 821 ◽  
pp. 79-84
Author(s):  
Vladimira Michalcova ◽  
Lenka Lausova

The article deals with the influence of a shape of the smokestacks casing on the final load from wind effects. It describes possibilities of defining an equivalent aerodynamic roughness and aerodynamic drag coefficient for numerical modelling of the flow around a circular cylinder. The aim is to determine the force coefficient for a smokestack of a cylindrical shape, which is sheeted with corrugated sheet metal. The flow around a smokestack is solved in software Ansys Fluent using the DES model.


Sign in / Sign up

Export Citation Format

Share Document