Improvement of Mechanical Properties, and Optimization of Process Parameters of AISI 1050 Spheriodized Annealed Steel by Ranking Algorithm

2019 ◽  
Author(s):  
Ganesh Babu Loganathan ◽  
Durai Kumaran ◽  
Sundar Singh Sivam Sundarlingam Paramasivam ◽  
Krishnaswamy Saravanan ◽  
Raj Rajendran
Author(s):  
Shashikanth Ch ◽  
G Venkateswarlu ◽  
Davidson M J

The extrusion of copper-based aluminium alloys is difficult in the cold state. Extruding these alloys between the solidus and liquidus temperatures offer preferred properties on these alloys. In the present work, AA2017, a copper-based aluminium alloy has been extruded in the semi-solid state. The mechanical and metallurgical properties of the alloy vary at different temperatures between the solidus and liquidus temperatures. The aim of the present work is to optimize the process parameters, namely, temperature of billet, strain rate, approach angle and percentage reduction in area on the semi-solid extrusion of AA2017 alloy. Experiments were designed according to Taguchi experimental design and L9 orthogonal array was used to conduct the experiments. Analysis of variance (ANOVA) method was used to find the significance of every process parameter on the thixo-extrusion process responses. The results indicate that percentage reduction area is the most important factor influencing the mechanical properties of thixo-extrusion specimen followed by temperature and strain rate.


Author(s):  
Prof. J. Sathees Babu

Mechanical properties of alloy such as UTs, surface hardness etc. of friction stir welding (FSW) jones were largely depend on the parameters of welding, such as speed of rotating tool, feed rate and axial thrust etc. by optimizing these parameters will results in better design of the weldments. To attain desired mechanical properties various optimizing techniques are available. In this paper an experiment is conducted on by varying process parameters and evaluating the mechanical properties (UTs) of the friction stir weldments. From the collected information data is created and used to create a mathematical model for optimization of the process parameters


2014 ◽  
Vol 9 (3) ◽  
pp. 155892501400900 ◽  
Author(s):  
Rajkumar Govindaraju ◽  
Srinivasan Jagannathan ◽  
Mohanbharathi Chinnasamy ◽  
P. Kandhavadivu

The present study focused optimizing the process parameters of compression molding with respect to mechanical properties for fabrication of wool fiber-reinforced polypropylene composites. An experiment was designed using the Box-Behnken method with three levels and three variables using temperature, time, and pressure, as independent variables and tensile, flexural, and impact strengths as dependent variables. The process conditions were optimized using response surface methodology with the Box-Behnken experimental design. Regression equations were obtained to analyze tensile strength, flexural strength, and impact strength and the optimum process parameters were identified. The results show that the optimum conditions for compression molding are 176°C, 7 min, and 35 bar.


2015 ◽  
Vol 813-814 ◽  
pp. 603-607
Author(s):  
T. Pravin ◽  
M. Sadhasivam ◽  
S. Raghuraman

Powder Metallurgy (P/M) is a manufacturing process in which powders are compacted in a die to attain the final product. P/M has certain unique advantage like controlled porosity, High Strength to weight ratio. Aluminium (Al) is a light weight material, but pure Al does not possess a good strength. To achieve the strength, Copper (Cu) powders are blended at required proportions. Al along with Cu shows good mechanical properties. An attempt is made to optimize the process parameter of Al – 10% Cu powder to attain maximum process efficiency. Here optimization is done by Taghuchi’s method.


Sign in / Sign up

Export Citation Format

Share Document