Virtual ECU Development for Antilock Braking System (ABS)

2021 ◽  
Author(s):  
Varaprasad Gandi ◽  
Lavanya M S Jr ◽  
Sharath Sindhe Jr
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1294
Author(s):  
Xiangdang XUE ◽  
Ka Wai Eric CHENG ◽  
Wing Wa CHAN ◽  
Yat Chi FONG ◽  
Kin Lung Jerry KAN ◽  
...  

An antilock braking system (ABS) is one of the most important components in a road vehicle, which provides active protection during braking, to prevent the wheels from locking-up and achieve handling stability and steerability. The all-electric ABS without any hydraulic components is a potential candidate for electric vehicles. To demonstrate and examine the all-electric ABS algorithms, this article proposes a single-wheel all-electric ABS test bench, which mainly includes the vehicle wheel, the roller, the flywheels, and the electromechanical brake. To simulate dynamic operation of a real vehicle’s wheel, the kinetic energy of the total rotary components in the bench is designed to match the quarter of the one of a commercial car. The vertical force to the wheel is adjustable. The tire-roller contact simulates the real tire-road contact. The roller’s circumferential velocity represents the longitudinal vehicle velocity. The design and analysis of the proposed bench are described in detail. For the developed prototype, the rated clamping force of the electromechanical brake is 11 kN, the maximum vertical force to the wheel reaches 300 kg, and the maximum roller (vehicle) velocity reaches 100 km/h. The measurable bandwidth of the wheel speed is 4 Hz–2 kHz and the motor speed is 2.5 Hz–50 kHz. The measured results including the roller (vehicle) velocity, the wheel velocity, and the wheel slip are satisfactory. This article offers the effective tools to verify all-electric ABS algorithms in a laboratory, hence saving time and cost for the subsequent test on a real road.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Youguo He ◽  
Chuandao Lu ◽  
Jie Shen ◽  
Chaochun Yuan

This paper is concerned with the problem of constraint control for an Antilock Braking System (ABS) with time-varying asymmetric slip ratio constraints. A quarter vehicle braking model with system uncertainties and a Burckhardt’s tire model are considered. The Time-varying Asymmetric Barrier Lyapunov Function (TABLF) is embedded into the controllers for handling the time-varying asymmetric slip ratio constraint problems. Two adaptive nonlinear control methods (TABLF1 and TABLF2) based on TABLF are proposed not only to track the optimal slip ratio but also to guarantee no violation on the slip ratio constraints. Simulation results show that the proposed controllers can guarantee no violation on slip ratio constraints and avoid self-locking. In the meantime, TABLF1 controller can achieve a faster convergence rate, shorter stopping time, and shorter distance, compared to TABLF2 controller with the same control parameters.


Sign in / Sign up

Export Citation Format

Share Document