scholarly journals Design and Analysis of Output Feedback Constraint Control for Antilock Braking System with Time-Varying Slip Ratio

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Youguo He ◽  
Chuandao Lu ◽  
Jie Shen ◽  
Chaochun Yuan

This paper is concerned with the problem of constraint control for an Antilock Braking System (ABS) with time-varying asymmetric slip ratio constraints. A quarter vehicle braking model with system uncertainties and a Burckhardt’s tire model are considered. The Time-varying Asymmetric Barrier Lyapunov Function (TABLF) is embedded into the controllers for handling the time-varying asymmetric slip ratio constraint problems. Two adaptive nonlinear control methods (TABLF1 and TABLF2) based on TABLF are proposed not only to track the optimal slip ratio but also to guarantee no violation on the slip ratio constraints. Simulation results show that the proposed controllers can guarantee no violation on slip ratio constraints and avoid self-locking. In the meantime, TABLF1 controller can achieve a faster convergence rate, shorter stopping time, and shorter distance, compared to TABLF2 controller with the same control parameters.

2019 ◽  
Vol 39 (4) ◽  
pp. 497-513 ◽  
Author(s):  
Youguo He ◽  
Chuandao Lu ◽  
Jie Shen ◽  
Chaochun Yuan

Purpose The purpose of this study is to improve vehicles’ brake stability, the problem of constraint control for an antilock braking system (ABS) with asymmetric slip ratio constraints is concerned. A nonlinear control method based on barrier Lyapunov function (BLF) is proposed not only to track the optimal slip ratio but also to guarantee no violation on slip ratio constraints. Design/methodology/approach A quarter vehicle braking model and Burckhardt’s tire model are considered. The asymmetric BLF is introduced into the controller for solving asymmetric slip ratio constraint problems. Findings The proposed controller can implement ABS zero steady-state error tracking of the optimal wheel slip ratio and make slip ratio constraints flexible for various runway surfaces and runway transitions. Simulation and experimental results show that the control scheme can guarantee no violation on slip ratio constraints and avoid self-locking. Originality/value The slip rate equation with uncertainties is established, and BLF is introduced into the design process of the constrained controller to realize the slip rate constrained control.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaolei Chen ◽  
Zhiyong Dai ◽  
Hui Lin ◽  
Yanan Qiu ◽  
Xiaogeng Liang

As an important device of the aircraft landing system, the antilock braking system (ABS) has a function to avoid aircraft wheels self-locking. To deal with the strong nonlinear characteristics, complex nonlinear control schemes are applied in ABS. However, none of existing control schemes focus on the braking operating status, which directly reflects wheels self-locking degree. In this paper, the braking operating status region is divided into three regions: the healthy region, the light slip region, and the deep slip region. An ABLF-based wheel slip controller is proposed for ABS to constrain the braking system operating status in the healthy region and the light slip region. Therefore the ABS will be prevented from operating in the deep slip region. Under the proposed control scheme, self-locking is avoided completely and zero steady state error tracking of the wheel optimal slip ratio is implemented. The Hardware-In-Loop (HIL) experiments have validated the effectiveness of the proposed controller.


Author(s):  
SHARIL IZWAN HARIS ◽  
Fauzi Ahmad ◽  
Mohd Hanif Che Hassan ◽  
Ahmad Kamal Mat Yamin ◽  
Nur Rashid Mat Nuri

This paper describes the design of an antilock braking system (ABS) control for a passenger vehicle that employs an electronic wedge brake (EWB). The system is based on a two-degree-of-freedom (2-DOF) vehicle dynamic traction model, with the EWB acting as the brake actuator. The developed control structure, known as the Self-Tuning PID controller, is made up of a proportional-integral-derivative (PID) controller that serves as the main feedback loop control and a fuzzy supervisory system that serves as a tuner for the PID controller gains. This control structure is generated through two structures, namely FPID and SFPID, where the difference between these two structures is based on the fuzzy input used. An ABS-based PID controller and a fuzzy fractional PID controller developed in previous works were used as the benchmark, as well as the testing method, to evaluate the effectiveness of the controller structure. According to the results of the tests, the performance of the SFPID controller is better than that of other PID and FPID controllers, being 10% and 1% faster in terms of stopping time, 8% and 1% shorter in terms of stopping distance, 9% and 1% faster in terms of settling time, and 40% and 5% more efficient in reaching the target slip, respectively.


2019 ◽  
Vol 8 (2) ◽  
pp. 1007-1010

This paper proposes a cheap and effective method to interface the concept of FUZZY LOGIC and (Antilock Braking System) ABS system used in cars and bikes for preventing the condition of wheel locking and wheel slipping and if wheel slipping occurs then how much of intensity of brake should be applied to keep the vehicle in control of the user. This decision is taken by Fuzzy System which makes decision based on user inputs namely Obstacle, Brake force and Slip ratio. The Fuzzy system gives an Pulse Width Modulation output based on three intensity levels of brake will be applied such as High Brake , Medium Brake and No Brake. Hardware Implementation consists of an MCU which is interfaced with an LCD and DC Series motor which displays intensity of brake applied and motor represents the motion of the actual wheel of a vehicle respectively.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1294
Author(s):  
Xiangdang XUE ◽  
Ka Wai Eric CHENG ◽  
Wing Wa CHAN ◽  
Yat Chi FONG ◽  
Kin Lung Jerry KAN ◽  
...  

An antilock braking system (ABS) is one of the most important components in a road vehicle, which provides active protection during braking, to prevent the wheels from locking-up and achieve handling stability and steerability. The all-electric ABS without any hydraulic components is a potential candidate for electric vehicles. To demonstrate and examine the all-electric ABS algorithms, this article proposes a single-wheel all-electric ABS test bench, which mainly includes the vehicle wheel, the roller, the flywheels, and the electromechanical brake. To simulate dynamic operation of a real vehicle’s wheel, the kinetic energy of the total rotary components in the bench is designed to match the quarter of the one of a commercial car. The vertical force to the wheel is adjustable. The tire-roller contact simulates the real tire-road contact. The roller’s circumferential velocity represents the longitudinal vehicle velocity. The design and analysis of the proposed bench are described in detail. For the developed prototype, the rated clamping force of the electromechanical brake is 11 kN, the maximum vertical force to the wheel reaches 300 kg, and the maximum roller (vehicle) velocity reaches 100 km/h. The measurable bandwidth of the wheel speed is 4 Hz–2 kHz and the motor speed is 2.5 Hz–50 kHz. The measured results including the roller (vehicle) velocity, the wheel velocity, and the wheel slip are satisfactory. This article offers the effective tools to verify all-electric ABS algorithms in a laboratory, hence saving time and cost for the subsequent test on a real road.


Sign in / Sign up

Export Citation Format

Share Document