Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021 ◽  
Author(s):  
Vivekanand Veeramani ◽  
Muthu Shanmugam Ramakrishnan ◽  
ASHISH PATIL ◽  
Kishan Agarwal ◽  
Ramanathan Karthi
Author(s):  
Thaddaeus Delebinski ◽  
Peter Eckert ◽  
Guenter P. Merker

Different synthetic fuels have been investigated within a variety of optical experiments at a rapid compression machine using diverse optical set-ups. The experiments have been carried out to determine the fuel requirements for good homogenisation and a controlled ignition and heat release for HCCI combustion. A directly actuated piezo injection system, which allows a flexible multiple injection strategy has been used to inject the fuel at different times during the compression stroke. Mie-scatter and Schlieren optics have been applied to investigate the different behaviour of the synthetic fuels concerning evaporation and mixture formation. The auto ignition behaviour of the different fuels has been investigated using an intensified relay optics and combustion chamber probes utilising the two-colour-method and a photo multiplier analysis systems. A multiple injection strategy and a 13 hole injection nozzle for HCCI operation mode with diesel-like fuels have been designed and optimised using CFD simulation prior to the experimental work. The experimental results using synthetic fuels will then be used to verify advanced 3D CFD models for multi component fuels and their behaviour concerning mixture formation and HCCI two-stage ignition.


Author(s):  
Dilunath Hareendranath ◽  
Nilesh Gajarlawar ◽  
Murali Manickam ◽  
Ghodke Pundlik

Main advantages of diesel engine are low fuel consumption coupled with high specific power output. However, benchmark Noise, Vibration and Harshness (NVH) of its counterpart (Gasoline), future stringent emission norms and overall system cost poses tough challenges. In a growing market like India, these benefits of diesel attract the buyer over its counterpart. Diesel engines are known for its heavy visible black smoke. The black smoke formation is more prominent in lower engine speed. This is due to lower injection pressure and the system limitation in conventional injection system and less air availability. Introduction of the common rail injection technology overcomes this difficulty by allowing the injection pressure to build irrespective of the engine speed. However, improving the air flow is a challenge. Generally waste gate turbo chargers are optimized for higher engine speed to match the rated engine performance, but compromising the lower engine speed performance. The use of Variable Geometry turbo charging (VGT), increase in number of valves per cylinder, two stage turbo charging are some of the solutions to this problem but it involves additional cost and fundamental design changes. Hence, it was a challenge to come up with a strategy to overcome this problem without any cost impact. Multiple injection strategy is one of the tools which improve the engine torque without the penalty of smoke. In this paper, a Multi Utility Vehicle (MUV) powered by a 2.5Ldiesel common rail engine, low end performance was effectively improved by this strategy. Current engine has BOSCH 2nd generation common rail system with waste gate Turbocharger. Torque at full load in lower engine speed was improved by introducing the early pilot with relatively higher quantity. However, in the part load, this pilot quantity was split into two successive pilot injections. Selection of pilot separation was optimized in such a way that Noise and Smoke levels are maintained or improved. In part load, improvement in smoke and BSFC was achieved without sacrificing noise level. Engine level trials were conducted with cylinder pressure and Noise Measurement with AVL Indicom. The Concept of Design of experiment (DOE) was used to minimize the number of iteration and for analysis of results. The vehicle performance, pass by noise were found to be improved.


2013 ◽  
Author(s):  
Jyotirmoy Barman ◽  
Sumit Arora ◽  
Akhilesh Shukla ◽  
Rizwan Khan ◽  
Ashish Moholkar

Author(s):  
Ramesh Babu Nallamothu ◽  
Nallamothu Anantha Kamal ◽  
Nallamothu Seshu Kishan ◽  
Injeti Nanaji Niranjan Kumar ◽  
Basava Venkata Appa Rao

Fuel ◽  
2018 ◽  
Vol 234 ◽  
pp. 1459-1468 ◽  
Author(s):  
Jialin Liu ◽  
Hu Wang ◽  
Zunqing Zheng ◽  
Linpeng Li ◽  
Bin Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document