Hydraulic Steering Control System - A Flow Amplifier Approach

1972 ◽  
Author(s):  
John B. Waggoner
2017 ◽  
Author(s):  
Chang-Joo Lee ◽  
Chan-Woo Jeon ◽  
Xiongzhe Han ◽  
Jung-Hoon Kim ◽  
Hak-Jin Kim

2011 ◽  
Vol 142 ◽  
pp. 79-82
Author(s):  
Wei Chun Zhang ◽  
Bing Bing Ma ◽  
Xian Bin Du ◽  
Bao Hao Pei ◽  
Jie Chen

Based on analyzing the structure and dynamic characteristics of this system, a dynamical mathematical model is established. To overcome the problems when using fuzzy controller or PID controller respectively and increase precision, a P-fuzzy-PID mode controller and a fuzzy PID controller is designed to control the system. The module of simulink which is a part of MATLAB is used to construct a monolithic mould. The fuzzy logic toolbox is used to construct a fuzzy mould. The results of simulation show that the performance of control becomes better by using this design.


2018 ◽  
Author(s):  
Sizwe Makhunga ◽  
Tivani P. Mashamba-Thompson ◽  
Mbuzeleni Hlongwa ◽  
Khumbulani W. Hlongwana

2021 ◽  
Vol 22 (4) ◽  
pp. 979-992
Author(s):  
Wu Liang ◽  
Ejaz Ahmac ◽  
Muhammad Arshad Khan ◽  
Iljoong Youn

Author(s):  
Neng Wan ◽  
Guangping Zeng ◽  
Chunguang Zhang ◽  
Dingqi Pan ◽  
Songtao Cai

This paper deals with a new state-constrained control (SCC) system of vehicle, which includes a multi-layer controller, in order to ensure the vehicle’s lateral stability and steering performance under complex environment. In this system, a new constraint control strategy with input and state constraints is applied to calculate the steady-state yaw moment. It ensures the vehicle lateral stability by tracking the desired yaw rate value and limiting the allowable range of the side slip. Through the linkage of the three-layer controller, the tire load is optimized and achieve minimal vehicle velocity reduction. The seven-degree-of-freedom (7-DOF) simulation model was established and simulated in MATLAB to evaluate the effect of the proposed controller. Through the analysis of the simulation results, compared with the traditional ESC and integrated control, it not only solves the problem of obvious velocity reduction, but also solves the problem of high cost and high hardware requirements in integrated control. The simulation results show that designed control system has better performance of path tracking and driving state, which is closer to the desired value. Through hardware-in-the-loop (HIL) practical experiments in two typical driving conditions, the effectiveness of the above proposed control system is further verified, which can improve the lateral stability and maneuverability of the vehicle.


Author(s):  
Shihuan Li ◽  
Lei Wang

For L4 and above autonomous driving levels, the automatic control system has been redundantly designed, and a new steering control method based on brake has been proposed; a new dual-track model has been established through multiple driving tests. The axle part of the model was improved, the accuracy of the transfer function of the model was verified again through acceleration-slide tests; a controller based on interference measurement was designed on the basis of the model, and the relationships between the controller parameters was discussed. Through the linearization of the controller, the robustness of uncertain automobile parameters is discussed; the control scheme is tested and verified through group driving test, and the results prove that the accuracy and precision of the controller meet the requirements, the robustness stability is good. Moreover, the predicted value of the model fits well with the actual observation value, the proposal of this method provides a new idea for avoiding car out of control.


Author(s):  
Avesta Goodarzi ◽  
Fereydoon Diba ◽  
Ebrahim Esmailzadeh

Basically, there are two main techniques to control the vehicle yaw moment. First method is the indirect yaw moment control, which works on the basis of active steering control (ASC). The second one being the direct yaw moment control (DYC), which is based on either the differential braking or the torque vectoring. An innovative idea for the direct yaw moment control is introduced by using an active controller system to supervise the lateral dynamics of vehicle and perform as an active yaw moment control system, denoted as the stabilizer pendulum system (SPS). This idea has further been developed, analyzed, and implemented in a standalone direct yaw moment control system, as well as, in an integrated vehicle dynamic control system with a differential braking yaw moment controller. The effectiveness of SPS has been evaluated by model simulation, which illustrates its superior performance especially on low friction roads.


Sign in / Sign up

Export Citation Format

Share Document