Effect of Fuel Composition on Diesel Engine Noise and Performance

1982 ◽  
Author(s):  
D. Anderton ◽  
P. E. Waters
Author(s):  
M.A. Asokan ◽  
S. Senthur Prabu ◽  
S. Prathiba ◽  
Shrey Mishra ◽  
Harsh Mittal ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402098840
Author(s):  
Mohammed S Gad ◽  
Sayed M Abdel Razek ◽  
PV Manu ◽  
Simon Jayaraj

Experimental work was done to examine the impact of diesel fuel with alumina nanoparticles on combustion characteristics, emissions and performance of diesel engine. Alumina nanoparticles were mixed with crude diesel in various weight fractions of 20, 30, and 40 mg/L. The engine tests showed that nano alumina addition of 40 ppm to pure diesel led to thermal efficiency enhancement up to 5.5% related to the pure diesel fuel. The average specific fuel consumption decrease about neat diesel fuel was found to be 3.5%, 4.5%, and 5.5% at dosing levels of 20, 30, and 40 ppm, respectively at full load. Emissions of smoke, HC, CO, and NOX were found to get diminished by about 17%, 25%, 30%, and 33%, respectively with 40 ppm nano-additive about diesel operation. The smaller size of nanoparticles produce fuel stability enhancement and prevents the fuel atomization problems and the clogging in fuel injectors. The increase of alumina nanoparticle percentage in diesel fuel produced the increases in cylinder pressure, cylinder temperature, heat release rate but the decreases in ignition delay and combustion duration were shown. The concentration of 40 ppm alumina nanoparticle is recommended for achieving the optimum improvements in the engine’s combustion, performance and emission characteristics.


Author(s):  
M.A. Asokan ◽  
S. Senthur Prabu ◽  
Anirudh Bollu ◽  
M. Abhinay Reddy ◽  
Aditya Ram ◽  
...  

Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Market globalization necessitates the development of heavy duty diesel engines that can operate at altitudes up to 5000 m without significant performance deterioration. But the current scenario is that existing studies on high altitude effects are still not sufficient or detailed enough to take effective measures. This study applied a single cylinder direct injection diesel engine with simulated boosting pressure to investigate the performance degradation at high altitude, with the aim of adding more knowledge to the literature. Such a research engine was conducted at constant speed and injection strategy but different ambient conditions from sea level to 5000 m in altitude. The results indicated the effects of altitude on engine combustion and performance can be summarized as two aspects. First comes the extended ignition delay at high altitude, which would raise the rate of pressure rise to a point that can exceed the maximum allowable limit and therefore shorten the engine lifespan. The other disadvantage of high-altitude operation is the reduced excess air ratio and gas density inside cylinder. Worsened spray formation and mixture preparation, together with insufficient and late oxidation, would result in reduced engine efficiency, increased emissions, and power loss. The combustion and performance deteriorations were noticeable when the engine was operated above 4000 m in altitude. All these findings support the need for further fundamental investigations of in-cylinder activities of diesel engines working at plateau regions.


Author(s):  
A L Iakovenko ◽  
A Y Dunin ◽  
P V Dushkin ◽  
E A Savastenko ◽  
M G Shatrov

Fuel ◽  
2014 ◽  
Vol 132 ◽  
pp. 7-11 ◽  
Author(s):  
Gökhan Tüccar ◽  
Erdi Tosun ◽  
Tayfun Özgür ◽  
Kadir Aydın

Sign in / Sign up

Export Citation Format

Share Document