Development of a Higher Boost Turbocharged Diesel Engine for Better Fuel Economy in Heavy Vehicles

1983 ◽  
Author(s):  
Takashi Suzuki ◽  
Akihiko Sato ◽  
Koichi Suenaga
2015 ◽  
Vol 799-800 ◽  
pp. 861-864
Author(s):  
Tayfun Özgür ◽  
Kadir Aydın

Charging system is used to increase the charge density. Supercharging system suffers from fuel consumption penalty because of compressor powered by engine output. Turbocharging system uses wasted exhaust energy that means compressor powered by exhaust turbine but has a turbo lag problem. The electrically assisted turbocharger which can eliminate turbo lag problem and fuel consumption penalty is the topic of this paper. The purpose of this paper is to analyze the effect of electrically assisted turbocharger on diesel engine performance parameters. The AVL Boost software program was used to simulate the electrically assisted turbocharged diesel engine. Simulations results showed that electrically assisted turbocharger increases low end torque and improves fuel economy.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 447
Author(s):  
Matteo Repetto ◽  
Massimiliano Passalacqua ◽  
Luis Vaccaro ◽  
Mario Marchesoni ◽  
Alessandro Pini Prato

In this paper, starting from the measurements available for a 2000 cm3 turbocharged diesel engine, an analytical model of the turbocharger is proposed and validated. The model is then used to extrapolate the efficiency of a power unit with a diesel engine combined with a turbocompound system. The obtained efficiency map is used to evaluate the fuel economy of a supercapacitor-based series hybrid vehicle equipped with the turbocompound power unit. The turbocompound model, in accordance with the studies available in the technical literature, shows that the advantages (in terms of efficiency increase) are significant at high loads. For this reason, turbocompound introduction allows a significant efficiency improvement in a series hybrid vehicle, where the engine always works at high-load. The fuel economy of the proposed vehicle is compared with other hybrid and conventional vehicle configurations.


2021 ◽  
Vol 349 ◽  
pp. 04006
Author(s):  
Anastasios Zavos ◽  
Pantelis G. Nikolakopoulos ◽  
Apostolos Pesyridis ◽  
Alasdair Cairns

Turbocharged engines with direct injection offer a significant contribution to engine downsizing technology. However, there remain many unsolved and ambitious issues concerning knocking and pre-ignition. Therefore, detailed understanding of the top compression ring lubrication and fuel economy is critical. This paper focuses on the tribological performance of the top compression ring under partially lubricated conditions caused by diesel knock in a turbocharged diesel engine. A mixed-hydrodynamics model was built including multi-phase flow and asperity interactions with realistic boundary conditions. The study shows that frictional power losses in the compression ring-liner contact increased owing to diesel knock and starved conditions in a turbocharged gasoline engine. This finding indicates that the control of knocking combined with the inlet flow conditions can help to mitigate fuel economy and emissions in ring-liner conjunction.


2018 ◽  
Vol 22 (3) ◽  
pp. 1259-1270
Author(s):  
Qiangqiang Zeng ◽  
Bolan Liu ◽  
Xiaochen Shi ◽  
Chao Zhang ◽  
Jingchao Hu

Author(s):  
Ming Zheng ◽  
David K. Irick ◽  
Jeffrey Hodgson

For diesel engines (CIDI) the excessive use of exhaust gas recirculation (EGR) can reduce in-cylinder oxides of nitrogen (NOx) generation dramatically, but engine operation can also approach zones with high instabilities, usually accompanied with high cycle-to-cycle variations and deteriorated emissions of total hydrocarbon (THC), carbon monoxide (CO), and soot. A new approach has been proposed and tested to eliminate the influences of recycled combustibles on such instabilities, by applying an oxidation catalyst in the high-pressure EGR loop of a turbocharged diesel engine. The testing was directed to identifying the thresholds of stable operation at high rates of EGR without causing cycle-to-cycle variations associated with untreated recycled combustibles. The elimination of recycled combustibles using the oxidation catalyst showed significant influences on stabilizing the cyclic variations, so that the EGR applicable limits are effectively extended. The attainability of low NOx emissions with the catalytically oxidized EGR is also evaluated.


Sign in / Sign up

Export Citation Format

Share Document