A Non-Distorting Heat Treatment Which Provides Both Wear and Corrosion Resistance

1989 ◽  
Author(s):  
Howard A. Ferguson
2010 ◽  
Vol 638-642 ◽  
pp. 846-851 ◽  
Author(s):  
Abdoul Fatah Kanta ◽  
Véronique Vitry ◽  
Fabienne Delaunois

Nickel-boron coatings were synthesized on mild steel by the electroless deposition method. Some of the coatings were submitted to a hardening heat treatment at 400°C during 1 hour in an atmosphere containing 95% Ar and 5% H2. Uncoated steel, treated and untreated samples were submitted to the Taber abrasion test to assess their wear resistance. The wear track was then examined by SEM and roughness measurement. The Taber Wear Index of untreated samples was slightly better than that of steel but heat treated samples attained TWI as small as 13. The corrosion resistance of the samples was investigated by the way of polarization and electrochemical impedance spectroscopy (EIS) and the influence of the heat treatment was observed.


2008 ◽  
Vol 141-143 ◽  
pp. 755-760 ◽  
Author(s):  
Antonio Forn ◽  
Isabel Espinosa ◽  
Maite T. Baile ◽  
Elisa Rupérez

Semi solid processing reduces porosity and amount of trapped gas and it allows heat treatment T6 that improves a hard anodized oxide layer. The aim of this work is to show the anodizing possibility of A356 T6 components conformed by Sub-liquidus Casting (SLC) to improve wear and corrosion resistance. This work compares the anodizing effect on tribological properties and corrosion resistance between components obtained by A6061 T6 extruded alloys and from A356 T6 produced by SLC. The effect of rounded silicon crystals on the coating formation and the fracture produced during the coating growth are described.


2013 ◽  
Vol 756-759 ◽  
pp. 60-63
Author(s):  
Xia Chang ◽  
Xiao Bin Zhang

Electroless nickle coating with plain and high binding force was obtained in this experiment .the samples were heat treated and diffused, then microstructure and transformation was investigated by optical microscope and scanning electron microscope. The hardness, binding force, wear and corrosion resistance are tested, the reasonable heat treatment process is gained. Hardness is increased after eletroless nickel plating and heat treatment compared with the matrix. The adhesion of sample heat treated at 400°C is highest, the weight loss and friction coefficient is lowest, the corrosion resistance is best..


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 307 ◽  
Author(s):  
Marco Hernandez-Rodriguez ◽  
Dionisio Laverde-Cataño ◽  
Diego Lozano ◽  
Gabriela Martinez-Cazares ◽  
Yaneth Bedolla-Gil

Cobalt-based alloys are extensively used in orthopedic applications for joint replacements due to their wear and corrosion resistance. Corrosion, however, is often associated with fatigue failure in these orthopedic devices. In this study, the effect of boron addition on the corrosion behavior of CoCrMo alloys was studied using linear polarization resistance, potentiodynamic polarization curves, electrochemical impedance spectroscopy, and cyclic voltammetry. The samples were analyzed under as-cast and heat treatment conditions after 21 days of immersion in phosphate-buffered saline (PBS) solution at 37 °C. The boron addition increased the particle content, while the heat treatment promoted enlargement and even distribution of the precipitates throughout the structure. The corrosion resistance was improved by both boron and heat treatments. The best performance was observed for a heat-treated alloy having a very small amount of boron, which had an increased resistance to corrosive attack. Such behavior was attributed to the homogenized microstructure achieved by boron and heat treatment that helped to form a stable passive layer of chromium oxide which endured the 21 days of immersion.


2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 72-80
Author(s):  
Oleksandr Danyleiko ◽  
Vitaliy Dzhemelinskyi ◽  
Dmytro Lesyk

A technique is presented for hardening metal products, in particular, the main tools (hammers) and cases of core drilling bits made of steel 30HGSA, using thermomechanical surface treatment according to a separate scheme. The method of combined laser thermomechanical hardening used in the study consists in the use of shot peening followed by laser heat treatment. Its use makes it possible to increase the operational properties of steel products, in particular, their wear and corrosion resistance. Based on the results of theoretical and experimental studies, the paper substantiates the features of dynamic surface plastic deformation for the analysis of impact during shot peening. The advantages of using laser hardening without surface melting are presented. Experimental research methods are proposed for determining the structural-phase composition, structure of the surface layer, hardness and microhardness of the hardened zones of steel 30HGSA. The range of rational modes of impact shot peening and thermal laser treatment has been determined. A device for testing samples for wear resistance has been developed. Methods of testing for wear and corrosion resistance of the surface of samples are proposed for assessing the tribological properties and contact interaction of materials under quasi-static and dynamic loading conditions. It is concluded that rational technological modes of hardening tools made of steel 30HGSA using combined laser thermomechanical treatment allow increasing the depth of the hardened layer by ~1.5 times compared to laser heat treatment. In addition, they provide the microhardness of the surface layer of ~5400 MPa, which is ~2.5 times higher than the microhardness of the base material


Alloy Digest ◽  
1961 ◽  
Vol 10 (7) ◽  

Abstract TANTUNG G is a cast nonferrous alloy containing tantalum or columbium carbide and having wear and corrosion resistance. It is used primarily for cutting tools. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-28. Producer or source: Vascoloy, Ramet Division.


Sign in / Sign up

Export Citation Format

Share Document