scholarly journals Model Based Diagnosis for the Air Intake System of the SI-Engine

1997 ◽  
Author(s):  
Mattias Nyberg ◽  
Lars Nielsen
1998 ◽  
Author(s):  
Mattias Nyberg ◽  
Andrej Perkovic ◽  
Lars Nielsen

Author(s):  
A. A. Dahlan ◽  
Mohd Farid Muhammad Said ◽  
Z. Abdul Latiff ◽  
M. R. Mohd Perang ◽  
S. A. Abu Bakar ◽  
...  

Air intake system of an internal combustion engine plays main role in delivering fresh air from the environment to the engine and dampening the sound of the engine combustion process coming from the engine combustion process. In this study, a simulation was conducted to improve the existing air intake system design in terms of acoustic study to have better sound quality by modifying the resonators, air duct and airbox volume of the air intake module. This study implements the 1-dimensional simulation study using commercial software, correlate to the 1.6-liter natural aspirated engine. The objective of this study is to decrease the engine noise at snorkel of the air intake module without losing too much of pressure drop. At the end of this study, the analysis defines the geometry of air intake module with the recommended resonator for fabrication and physical testing. The simulation result shows that the modified air intake module meet the objective and fulfil the performance target.


Author(s):  
N.S. Mustafa ◽  
N.H.A. Ngadiman ◽  
M.A. Abas ◽  
M.Y. Noordin

Fuel price crisis has caused people to demand a car that is having a low fuel consumption without compromising the engine performance. Designing a naturally aspirated engine which can enhance engine performance and fuel efficiency requires optimisation processes on air intake system components. Hence, this study intends to carry out the optimisation process on the air intake system and airbox geometry. The parameters that have high influence on the design of an airbox geometry was determined by using AVL Boost software which simulated the automobile engine. The optimisation of the parameters was done by using Design Expert which adopted the Box-Behnken analysis technique. The result that was obtained from the study are optimised diameter of inlet/snorkel, volume of airbox, diameter of throttle body and length of intake runner are 81.07 mm, 1.04 L, 44.63 mm and 425 mm, respectively. By using these parameters values, the maximum engine performance and minimum fuel consumption are 93.3732 Nm and 21.3695×10-4 kg/s, respectively. This study has fully accomplished its aim to determine the significant parameters that influenced the performance of airbox and optimised the parameters so that a high engine performance and fuel efficiency can be produced. The success of this study can contribute to a better design of an airbox.


Sign in / Sign up

Export Citation Format

Share Document