Vehicle Flow Measurement and CFD Analysis for Wind Noise Assessment

1997 ◽  
Author(s):  
Jen Y. Her ◽  
Stan Wallis ◽  
Richard H. Chen ◽  
Wen Tzong Lee

Car drag reduction activities are parts of exterior body improvement which related to energy consumption, wind noise and stability of overall vehicle. Micro Electric Vehicle (MEV) has emerged as one of human mobility that aligned with the concept of low energy consumption. The concept has gained popularity due to its simplicity in design and manufacturing capability which in overall, leads to less energy consumption for both vehicle owner and manufacturer. The aim of this work is to design an MEV where the passenger’s anthropometry of 95th percentile male and 5th percentile female have been considered as a main factor. 3D data of MEV has been developed based on scaled down conceptual design from clay model. Computer Fluid Dynamic (CFD) analysis were used on actual size of MEV to determine the effect of the vehicle height. Maximum speed of 30m/s has been introduced in the analysis. The speed is a simulation from real world condition of mobility which will be the limit speed of the vehicle. As a result the 128mm increase in streamline height has significant impact on the drag force where the drag coefficient increase approximately 31% to the initial height. As a conclusion CFD approach can be used to successfully determine an optimal height of MEV based on streamline design. The finding significantly assist in future improvement of streamline design of the MEV.


2017 ◽  
Vol 10 (1) ◽  
pp. 286-298 ◽  
Author(s):  
Vinh Long Phan ◽  
Hiroshi Tanaka ◽  
Takaaki Nagatani ◽  
Mikio Wakamatsu ◽  
Tsuyoshi Yasuki

1985 ◽  
Vol 49 (12) ◽  
pp. 820-823 ◽  
Author(s):  
RC Scheid ◽  
RP Pagniano ◽  
DE Kos
Keyword(s):  

1991 ◽  
Vol 88 (9) ◽  
pp. 905-911
Author(s):  
C.A.A. Jonker ◽  
J. Vermeij

2020 ◽  
pp. 30-35
Author(s):  
Gurami N. Akhobadze

In the age of digital transformation of production processes in industry and science the development and design of intelligent flow sensors for granular and liquid substances transferring through pipelines becomes more important. With this in view new approaches for improving the accuracy of microwave flowmeters are proposed. Taking into account the characteristics ofelectromagnetic waves propagating through a pipeline, a wave scattered by inhomogeneities of the controlled medium is analyzed. Features of the transformation of the polarized scattered wave limiting the geometric dimensions of the pipeline and optimizing the values of the useful scattered signal are revealed. Expediency of collection of the information signal with orthogonal polarization of the scattered wave and through a directional coupler is substantiated. The method of estimating the measurement accuracy with reference to the signal-to-noise ratio at the input of the processing device is given. The research results can be used in cryogenic machine engineering to measure volume and mass flows of liquid cryogenic products.


Author(s):  
Anatoly Kusher

The reliability of water flow measurement in irrigational canals depends on the measurement method and design features of the flow-measuring structure and the upstream flow velocity profile. The flow velocity profile is a function of the channel geometry and wall roughness. The article presents the study results of the influence of the upstream flow velocity profile on the discharge measurement accuracy. For this, the physical and numerical modeling of two structures was carried out: a critical depth flume and a hydrometric overfall in a rectangular channel. According to the data of numerical simulation of the critical depth flume with a uniform and parabolic (1/7) velocity profile in the upstream channel, the values of water discharge differ very little from the experimental values in the laboratory model with a similar geometry (δ < 2 %). In contrast to the critical depth flume, a change in the velocity profile only due to an increase in the height of the bottom roughness by 3 mm causes a decrease of the overfall discharge coefficient by 4…5 %. According to the results of the numerical and physical modeling, it was found that an increase of backwater by hydrometric structure reduces the influence of the upstream flow velocity profile and increases the reliability of water flow measurements.


Sign in / Sign up

Export Citation Format

Share Document