Investigating the Role of Fatty Acid Methyl Ester Composition on Engine Performance and Emission Characteristics

Author(s):  
B. Jeeva ◽  
C.R. Rajashekar

This experimental study is focused on the significance of Fatty Acid Methyl Ester (FAME) composition for usage of biodiesel in diesel engines. Karanja Oil Methyl Esters (KOME) from two different feed stocks were selected for the study. FAME composition was analysed by gas chromatography and physical, chemical properties were evaluated. KOME 30% blends with diesel were analysed for performance and Emission characteristics. The present work predicted that H30 sample 1 with higher unsaturation has resulted in higher peak pressure, higher NOx emissions, as compared to H30 sample 2 with lower unsaturation fatty acid methyl ester composition.

2015 ◽  
Vol 787 ◽  
pp. 766-770 ◽  
Author(s):  
J. Thangaraja ◽  
S. Rajkumar

Biodiesel is a renewable fuel and an attractive alternative to replace fossil diesel without major engine modifications. However, the emissions of oxides of nitrogen (NOx) from biodiesel fuelled engines are reported to be higher compared to diesel engine. The characteristics of biodiesel are known to depend on their fatty acid methyl ester (FAME) contents which vary with the feedstock. Thus the contribution of saturation and unsaturation of pure components of fatty acid methyl esters on NOx formation warrants a systematic investigation. This paper attempts to relate the composition of biodiesel with NOx formation. For this purpose, the NO formation from pure fatty acid methyl esters are predicted using extended Zeldovich reaction scheme. Also, the experiments are conducted for measuring oxides of nitrogen from a compression ignition engine operated using neat palm and karanja methyl esters and their blends providing biodiesel combinations of varying degree of saturation for investigation. The measured NOx concentrations are compared with the corresponding predictions to affirm the influence of fatty acid methyl ester on engine NOx characteristics. The results clearly indicate that the change in degree of saturation influences the NOx formation and an increase in the degree of saturation of biodiesel decreases the engine NOx emission.


KOVALEN ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 206-211
Author(s):  
Sumarni ◽  
Erwin Abdul Rahim ◽  
Ni Ketut Sumarni ◽  
Ruslan ◽  
Hardi Ys. ◽  
...  

Research on the manufacture of methyl esters from avocado seeds (Parsea americana Mill) with eugenol-based catalysts has been conducted. The aim is to determine the catalyst concentration used to produce methyl esters with the highest rendement and determine the composition of fatty acid methyl ester in avocado seeds. This study was used variations in concentrations of 0.25%, 1%, 1.75%, 2.25%, and 3%. The results of this study showed that the best concentration is 2.25% with the calculation of the results of 24.8% methyl esters in avocado seeds, namely lignoceric and octadecenoic acid methyl ester. Keywords: Avocado seeds, fatty acid methyl esters


2020 ◽  
Vol 14 (3) ◽  
pp. 327-339
Author(s):  
M. Jamshaid ◽  
H. H. Masjuki ◽  
M. A. Kalam ◽  
N. W. M. Zulkifli ◽  
A. Arslan ◽  
...  

This paper presents the experimental results carried out to evaluate the fatty acid methyl ester (FAME) obtained from cotton-seed oil and palm oil on fuel-injector wear characteristics. The cottonseed oil methyl ester (COME) and palm oil methyl ester (POME) were produced in the laboratory using alkaline transesterification. Gas chromatography based on 'BS EN 14103:2011' standard was used to analyze the percentage of fatty acids in COME and POME. The physicochemical properties of the two methyl esters were measured based on ASTM and EN standards. Various unique blends using cottonseed–palm oil methyl ester (CPME) were tested. Thirteen (13) different types of fuel blends were prepared from COME, POME, and petroleum diesel fuel (DF100). The wear and lubricity characteristics were measured using a high-frequency reciprocating rig (HFRR) based on ASTM D6079 standard. The worn surfaces of the specimen plates were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The COME100, POME100, and CPME100 showed excellent lubricity properties for the fuel injector in terms of lower COF and wear coefficient when compared with DF100. COME100, POME100 and CPME100 showed lower average COF compared to DF100 by 16.9%, 13.9% and 16.1%, respectively. This may be due to the presence of unsaturated fatty acids in the methyl esters composition. Consequently, the fatty acid methyl esters can be used to reduce the friction and wear of the fuel injectors due to the improvement in the tribological properties of the fuel.


2003 ◽  
Vol 58 (3-4) ◽  
pp. 295-299 ◽  
Author(s):  
Shin-ichi Tebayashi ◽  
Takuya Kawahara ◽  
Chul-Sa Kim ◽  
Akinori Nishi ◽  
Keiichi Takahashi ◽  
...  

Four fatty acid methyl esters identified in the solvent extract of Tribolium confusum (Jacquelin du Val) larvae as kairomones were individually and collectively tested for probing behavior of Peregrinator biannulipes Montrouzier et Signoret. All identified fatty acid methyl eaters, methyl palmitate, methyl linolate, methyl oleate and methyl stearate, exhibited characterisitic kairomonal probing behavior of P. biannulipe toward the lure. These fatty acid methyl ester were active at 0.2 μg/lure but a synergistic effect was not observed among them. Commercially available C8-C14 even-numbered fatty acid methyl esters that were not detected in the extract of T. confusum larvae also elicited a probing behavior but their activities were weaker than those of four fatty acid methyl ester (C16:0, C18:0, C18:1 and C18:2) identified in the extract. On the other hand, C17 and C19 odd-numbered fatty acid methyl esters did not show any activity at all.


2013 ◽  
Author(s):  
Jr Morris ◽  
Shardo Robert W. ◽  
Higgins James ◽  
Cook Kim ◽  
Tanner Rhonda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document