Analysis of Auxiliary Structure Mounted on 8x8 Military Vehicle Chassis for Off-Road Logistics

Author(s):  
Vikas Radhakrishna Deulgaonkar

Present work deals with the design, development of auxiliary structure mounted on high mobility off-road 8x8 wheeled military logistic vehicles or troop trucks. Such auxiliary structures offer a levelled base to the shelters carrying cargo ranging from sophisticated electronic equipment, tracking system, troops, weapons, arms and ammunition which require special environment to function. Design traits as clearance between the shelter and skids, intense load pattern, approach, departure and ramp angles and their effects on auxiliary structure design are presented. Design factors such as load distribution on front and rear axles, shelter height, ground clearance and their effects on the structure design are discussed. Finite element analysis (FEA) technique is utilized to simulate the behaviour of the auxiliary structure. Formulated auxiliary structure configuration possess exceptional resistance against twisting and bending due to introduction of the intense load pattern. Different configurations and variant load response of this structure is figured out using FEA simulation procedure. Application of statistical and experimental strain measurement techniques for design validation of the formulated structure is presented. Wilcoxon signed rank test is employed for evaluation of experimental and finite element outcomes.

Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


2021 ◽  
Author(s):  
Xiaolin Zhang ◽  
Tianyi Guan ◽  
Lei Fan ◽  
Na Wang ◽  
Li Shang ◽  
...  

2021 ◽  
Author(s):  
Sinan Yıldırım ◽  
Ufuk Çoban ◽  
Mehmet Çevik

Suspension linkages are one of the fundamental structural elements in each vehicle since they connect the wheel carriers i.e. axles to the body of the vehicle. Moreover, the characteristics of suspension linkages within a suspension system can directly affect driving safety, comfort and economics. Beyond these, all these design criteria are bounded to the package space of the vehicle. In last decades, suspension linkages have been focused on in terms of design development and cost reduction. In this study, a control arm of a diesel public bus was taken into account in order to get the most cost-effective design while improving the strength within specified boundary conditions. Due to the change of the supplier, the control arm of a rigid axle was redesigned to find an economical and more durable solution. The new design was analyzed first by the finite element analysis software Ansys and the finite element model of the control arm was validated by physical tensile tests. The outputs of the study demonstrate that the new design geometry reduces the maximum Von Mises stress 15% while being within the elastic region of the material in use and having found an economical solution in terms of supplier’s criteria.


Author(s):  
Dag Fergestad ◽  
Frank Klæbo ◽  
Jan Muren ◽  
Pål Hylland ◽  
Tom Are Grøv ◽  
...  

This paper discusses the structural challenges associated with high axial temperature gradients and the corresponding internal cross section forces. A representative flexible pipe section designed for high operational temperature has been subject to full scale testing with temperature profiles obtained by external heating and cooling. The test is providing detailed insight in onset and magnitude of relative layer movements and layer forces. As part of the full-scale testing, novel methods for temperature gradient testing of unbonded flexible pipes have been developed, along with layer force- and deflection-measurement techniques. The full-scale test set-up has been subject to numerous temperature cycles of various magnitudes, gradients, absolute temperatures, as well as tension cycling to investigate possible couplings to dynamics. Extensive use of finite element analysis has efficiently supported test planning, instrumentation and execution, as well as enabling increased understanding of the structural interaction within the unbonded flexible pipe cross section. When exploiting the problem by finite element analysis, key inputs will be correct material models for the polymeric layers, and as-built dimensions/thicknesses. Finding the balance between reasonable simplification and model complexity is also a challenge, where access to high quality full-scale tests and dissected pipes coming back from operation provides good support for these decisions. Considering the extensive full scale testing, supported by advanced finite element analysis, it is evident that increased attention will be needed to document reliable operation in the most demanding high temperature flexible pipe applications.


2012 ◽  
Vol 590 ◽  
pp. 487-491
Author(s):  
Qin Man Fan

The frame is the main part of the force matrix of truck vehicle and the stress state is complex and difficult to design. The finite element method is more accurate for the analysis of the static and dynamic characteristics of the frame, which provide guidance for the frame structure design. Establish finite element model of the frame with the application of ANSYS. According to the mechanical analysis of the model, impose reasonable constraints and load, the most typical of the four conditions in the frame is calculated with the finite element analysis, and predicted the weak parts of the frame according to the frame stress-strain cloud, which provided a very important theoretical basis for the improvement of the frame structure of the frame and optimizing design of the frame.


2011 ◽  
Vol 268-270 ◽  
pp. 1200-1204
Author(s):  
Li Xin Zhang ◽  
Quan Liang Cao

Electromagnetic tracking systems are often used to track location and orientation of an implantable medical instrument in the human body. This paper presents a 3D tracking system that is based on AC magnetic field transmitting and sensing. The concept and principle to detect position and orientation are introduced. Then the tracking behaviors for different degree-of-freedom (DOF) are investigated using finite element analysis. The tracking errors on the position and orientation accuracy are presented using the equivalent dipole field model and some improving measures are proposed, especially for the tracking at close region. We can find that using the finite element analysis to simulate the mutual inductance between transmitting and sensing coils is an effective method to research the tracking behaviors.


Author(s):  
Wei Song ◽  
Hae Chang Gea ◽  
Ren-Jye Yang ◽  
Ching-Hung Chuang

In finite element analysis, inertia relief solves the response of an unconstrained structure subject to constant or slowly varying external loads with static analysis computational cost. It is very attractive to utilize it in topology optimization to design structures under unbalanced loads, such as in impact and drop phenomena. In this paper, regional strain energy formulation and inertia relief is integrated into topology optimization to design protective structure under unbalanced loads. For background, the equations of inertia relief are introduced and a commonly used solving method is revisited. Then the regional strain energy formulation for topology optimization with inertia relief is proposed and its sensitivity is derived from the adjoint method. Based on the solving method, the sensitivity is evaluated term by term to simplify the results. The simplified sensitivity can be calculated easily using the output of commercial finite element packages. Finally, the effectiveness of this formulation is shown in the first example and the proposed regional strain energy formulation for topology optimization with inertia relief are presented and discussed in the protective structure design examples.


Sign in / Sign up

Export Citation Format

Share Document