equivalent dipole
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
И.А. Баранников ◽  
Е.А. Ищенко ◽  
С.М. Фёдоров

Рассматривается плазменная вибраторная антенна, которая предназначена для работы в VHF диапазоне на частоте 140 МГц. Вибраторные плазменные антенны отличаются от обычных вибраторных антенн тем, что металлический проводник заменяется плазмой в газоразрядной трубке. Плазменный вибратор, создаваемый разрядом в трубке, способен включаться и выключаться за время порядка микросекунд. Применение плазменной антенны позволяет обеспечить два режима работы: активный, когда плазма индуцирует проводящую поверхность, и скрытый, когда антенна становится практически невидимой для электромагнитных волн, а плазменное облако отсутствует. Для определения характеристик антенны использовалось электродинамическое моделирование. Полученные результаты показывают, что характеристики плазменной вибраторной антенны близки к характеристикам эквивалентного ей металлического диполя, при этом длина плазменной антенны меньше. Для определения эффективности скрытного режима антенны производилось сравнение характеристик эффективной площади рассеяния плазменной антенны с выключенным плазменным облаком и эквивалентного металлического диполя. Полученные результаты показывают, что плазменная антенна обладает высокой эффективностью излучения, диаграммами направленности, схожими с эквивалентной дипольной антенной, и значительно меньшими значениями эффективной площади рассеяния (ЭПР) в выключенном режиме The article discusses a plasma dipole antenna, which is designed to operate in the VHF band at a frequency of 140 MHz. Plasma dipole antennas differ from conventional dipole antennas in that the metal conductor is replaced by plasma in the discharge tube. The plasma dipole created by the discharge in the tube is capable of turning on and off in times of the order of microseconds. The use of a plasma antenna makes it possible to provide two modes of operation: active, when the plasma induces a conductive surface, and hidden, when the antenna becomes practically invisible to electromagnetic waves, and the plasma cloud is absent. We used electrodynamic modeling to determine the characteristics of the antenna. The results show that the characteristics of the plasma dipole antenna are close to those of the equivalent metal dipole, while the length of the plasma antenna is shorter. To determine the efficiency of the hidden mode of the antenna, we compared the characteristics of radar cross-section of the plasma antenna with the plasma cloud turned off and the equivalent metal dipole. The results obtained show that the plasma antenna has a high radiation efficiency, directional patterns similar to an equivalent dipole antenna, and significantly lower RCS values in the off mode


Author(s):  
Jessica M. Ross ◽  
Daniel C. Comstock ◽  
John R. Iversen ◽  
Scott Makeig ◽  
Ramesh Balasubramaniam

Brain systems supporting body movement are active during music listening in the absence of overt movement. This covert motor activity is not well understood, but some theories propose a role in auditory timing prediction facilitated by motor simulation. One question is how music-related covert motor activity relates to motor activity during overt movement. We address this question using scalp electroencephalogram by measuring mu rhythms-- cortical field phenomena associated with the somatomotor system that appear over sensorimotor cortex. Lateralized mu enhancement over hand sensorimotor cortex during/just before foot movement in foot vs. hand movement paradigms is thought to reflect hand movement inhibition during current/prospective movement of another effector. Behavior of mu during music listening with movement suppressed has yet to be determined. We recorded 32-channel EEG (N=17) during silence without movement, overt movement (foot/hand), and music listening without movement. Using an Independent Component Analysis-based source equivalent dipole clustering technique, we identified three mu-related clusters, localized to left primary motor and right and midline premotor cortices. Right foot tapping was accompanied by mu enhancement in the left lateral source cluster, replicating previous work. Music listening was accompanied by similar mu enhancement in the left, as well as midline, clusters. We are the first to report, and also to source-resolve, music-related mu modulation in the absence of overt movements. Covert music-related motor activity has been shown to play a role in beat perception (1). Our current results show enhancement in somatotopically organized mu, supporting overt motor inhibition during beat perception.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaodong Zhang ◽  
Zhufeng Lu ◽  
Teng Zhang ◽  
Hanzhe Li ◽  
Yachun Wang ◽  
...  

Electroencephalogram (EEG) modeling in brain-computer interface (BCI) provides a theoretical foundation for its development. However, limited by the lack of guidelines in model parameter selection and the inability to obtain personal tissue information in practice, EEG modeling in BCI is mainly focused on the theoretical qualitative level which shows a gap between the theory and its application. Based on such problems, this work combined the surface EEG simulation with a converter based on the generative adversarial network (GAN), to establish the connection from simulated EEG to its application in BCI classification. For the scalp EEGs modeling, a mathematical model was built according to the physics of surface EEG, which consisted of the parallel 3-population neural mass model, the equivalent dipole, and the forward computation. For application, a converter based on the conditional GAN was designed, to transfer the simulated theoretical-only EEG to its practical version, in the lack of individual bio-information. To verify the feasibility, based on the latest microexpression-assisted BCI paradigm proposed by our group, the converted simulated EEGs were used in the training of BCI classifiers. The results indicated that, compared with training with insufficient real data, by adding the simulated EEGs, the overall performance showed a significant improvement (P = 0.04 < 0.05), and the test performance can be improved by 2.17% ± 4.23, in which the largest increase was up to 12.60% ± 1.81. Through this work, the link from theoretical EEG simulation to BCI classification has been initially established, providing an enhanced novel solution for the application of EEG modeling in BCI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jeanne G. van der Waal ◽  
Veronique M. F. Meijborg ◽  
Charly N. W. Belterman ◽  
Geert J. Streekstra ◽  
Thom F. Oostendorp ◽  
...  

Background: The detection and localization of electrophysiological substrates currently involve invasive cardiac mapping. Electrocardiographic imaging (ECGI) using the equivalent dipole layer (EDL) method allows the noninvasive estimation of endocardial and epicardial activation and repolarization times (AT and RT), but the RT validation is limited to in silico studies. We aimed to assess the temporal and spatial accuracy of the EDL method in reconstructing the RTs from the surface ECG under physiological circumstances and situations with artificially induced increased repolarization heterogeneity.Methods: In four Langendorff-perfused pig hearts, we simultaneously recorded unipolar electrograms from plunge needles and pseudo-ECGs from a volume-conducting container equipped with 61 electrodes. The RTs were computed from the ECGs during atrial and ventricular pacing and compared with those measured from the local unipolar electrograms. Regional RT prolongation (cooling) or shortening (pinacidil) was achieved by selective perfusion of the left anterior descending artery (LAD) region.Results: The differences between the computed and measured RTs were 19.0 ± 17.8 and 18.6 ± 13.7 ms for atrial and ventricular paced beats, respectively. The region of artificially delayed or shortened repolarization was correctly identified, with minimum/maximum RT roughly in the center of the region in three hearts. In one heart, the reconstructed region was shifted by ~2.5 cm. The total absolute difference between the measured and calculated RTs for all analyzed patterns in selectively perfused hearts (n = 5) was 39.6 ± 27.1 ms.Conclusion: The noninvasive ECG repolarization imaging using the EDL method of atrial and ventricular paced beats allows adequate quantitative reconstruction of regions of altered repolarization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher Laohathai ◽  
John S. Ebersole ◽  
John C. Mosher ◽  
Anto I. Bagić ◽  
Ai Sumida ◽  
...  

Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 900
Author(s):  
Hao Cheng ◽  
Manling Ge ◽  
Abdelkader Nasreddine Belkacem ◽  
Xiaoxuan Fu ◽  
Chong Xie ◽  
...  

Although the power of low-frequency oscillatory field potentials (FP) has been extensively applied previously, few studies have investigated the influence of conducting direction of deep-brain rhythm generator on the power distribution of low-frequency oscillatory FPs on the head surface. To address this issue, a simulation was designed based on the principle of electroencephalogram (EEG) generation of equivalent dipole current in deep brain, where a single oscillatory dipole current represented the rhythm generator, the dipole moment for the rhythm generator’s conducting direction (which was orthogonal and rotating every 30 degrees and at pointing to or parallel to the frontal lobe surface) and the (an)isotropic conduction medium for the 3D (a)symmetrical brain tissue. Both the power above average (significant power value, SP value) and its space (SP area) of low-frequency oscillatory FPs were employed to respectively evaluate the strength and the space of the influence. The computation was conducted using the finite element method (FEM) and Hilbert transform. The finding was that either the SP value or the SP area could be reduced or extended, depending on the conducting direction of deep-brain rhythm generator flowing in the (an)isotropic medium, suggesting that the 3D (a)symmetrical brain tissue could decay or strengthen the spatial spread of a rhythm generator conducting in a different direction.


2021 ◽  
pp. 42-49
Author(s):  
A. Yu. Mikhailov ◽  
I. Yu. Berezina ◽  
L. I. Sumsky ◽  
Yu. L. Arzumanov

Objective: to evaluate the indicators of electrical activity of the brain using frequency- spectral analysis and data of three- dimensional localization of sources of pathological activity for an approach to the analysis of possible neurophysiological mechanisms of the brain of patients whose EEG recorded the phenomenon of ‘burst- suppression’.Material and methods: 45 electroencephalograms recorded in 22 patients (average age 51.05; 11 women, 11 men) were analyzed. In 12 patients, the EEG study was performed in dynamics from 1 to 8 times. At the time of the first registration, the ‘burst- suppression’phenomenon was recorded in the EEG of all patients. The level of wakefulness of all patients, with the exception of patients who were under anesthesia, was 3 points on the Glasgow coma scale.EEG recording was performed on electroencephalographs ‘Encephalan-  EEGR-19/26’, ‘Mitsar-  EEG-10/70–201’, ‘Mitsar-  EEG-SmartBCI’, ‘Neuron-  Spectrum-5’and ‘Neuron- Spectrum-65’in accordance with the International scheme of arrangement of electrodes 10–20 %. A frequency- spectral analysis of the power of the ‘burst’and ‘suppression’periods was carried out — the fast Fourier transform method was used. The program ‘BrainLoc 6.1’(Russia) was used for localization of equivalent dipole sources of pathological electrical activity of the ‘burst’period.Results: during the first EEG recording, the ‘burst- suppression’phenomenon was recorded in all patients. In seven patients, the ‘burst’period in the ‘burstsuppression’phenomenon was visually represented by slow-wave oscillations, in 15 patients, the ‘burst’periods resembled epileptiform discharges. In frequency- spectral analysis EEG in all patients in the ‘burst’period, the dominance of the power of slow-wave oscillations (mainly in the delta range) was noted. According to the program ‘BrainLoc 6.1’, equivalent dipole sources of pathological activity of the ‘burst’period were recorded at the level of the thalamus, in the medio- basal parts of the frontal and temporal lobes on both sides. A favorable outcome of the ‘burst- suppression’phenomenon was observed in only five patients of 22, all other patients had an unfavorable outcome.Conclusion: a favorable outcome of the ‘burst- suppression’phenomenon was observed only in patients under sevorane anesthesia and in some patients after acute poisoning with drugs that affect the central nervous system, while patients after brain anoxia had an unfavorable outcome. In prognostic terms, our data are comparable to the literature data. The changes revealed during the frequency-spectral analysis of the EEG in the form of the dominance of the power of slow-wave oscillations (mainly in the delta range), as well as the localization of the supposed generators of electrical activity in the ‘burst’ period at the level of the thalamus, in the mediobasal parts of the frontal and temporal lobes (according to the ‘BrainLoc 6.1’program), may to some extent be consistent with the data of experimental works and mathematical models of the ‘burst–suppression’phenomenon If the ‘burst-  suppression’ phenomenon is detected during EEG registration, it is advisableto conduct a dynamic EEG study or EEG monitoring.


Author(s):  
Elena V. Katamanova ◽  
Elena N. Korchuganova ◽  
Natalia V. Slivnitsyna ◽  
Irina V. Kudaeva ◽  
Oleg L. Lakhman

Introduction. Despite the apparent connection of the existing neurological disorders and changes in the psycho-emotional sphere with sleep disorders in patients with chronic mercury intoxication (CRI), these relationships remain the least studied in the clinic neurointoxications. The study aimed to establish a connection between neurophysiological, biochemical, and psychopathological indicators in patients with occupational chronic mercury intoxication and insomnia. Materials and methods. Thirty-six patients took part in the examination in the remote period of CRI. The average age of patients in this group was 50.7±1.05 years, with an average work experience of 14.7±1.05. The authors carried out a psychological examination to determine the levels of depression, anxiety, asthenic state, computed electroencephalography (EEG), cognitive evoked potentials (CEP), polysomnography, the level of neurotransmitters. Results. The study showed that asthenization, when exposed to mercury, occurs due to a decrease in the limbic-hypothalamo-reticular complex activity (the presence of equivalent dipole sources of pathological activity in the area of diencephalic formations (thalamus, hypothalamus) in 56.2±5.6% of cases. The study showed a decrease in activity cerebral cortex, confirmed by weakening the coherent connections of the α-range in the occipital, central and frontal leads according to the data of coherent EEG analysis and changes on the part of the CEP. There was a direct correlation between the level of total sleep time and the serotonin level (rs=0.45), an inverse relationship between the level of depression and histamine level (rs=-0.56). Conclusion. The studies carried out to make it possible to establish the mechanisms of insomnia disorders in chronic mercury intoxication, which cause a weakening of the tone of the cerebral cortex and changes in neurotransmitter metabolism, as well as disorders of the reticular system with limbic structures. The study showed a close direct relationship between neurophysiological, psychological, and biochemical parameters in implementing insomnia in patients with chronic mercury intoxication.


2020 ◽  
Vol 1 (14) ◽  
pp. 32-38
Author(s):  
I. Yu. Berezina ◽  
L. I. Sumsky ◽  
A. Yu. Mikhailov ◽  
Yu. L. Arzumanov

Objective: to assess the safety of indicators of electrical activity of the brain for the approach to the analysis of the basic neurophysiological mechanisms of the brain in patients after cardiac arrest.Materials and methods: 52 patients were examined (age — 54,68 ± 19,33) after cardiac arrest. At the time of recording the electroencephalogram (EEG), the level of wakefulness of the examined patients on the Glasgow coma scale was in the range of 3 to 13 points. In 35 patients, EEG recording was performed starting from the first three days from the moment of cardiac arrest, in 17 patients — from the fourth to the 18th day. EEG was registered on electroencephalographs ‘Encephalan–EEGR–19/26’ by ‘Medikom MTD’, ‘Neuron-Spectrum–5/EP’ and ‘Neuron-Spectrum–65’ by ‘Neurosoft’ in accordance with the recommendations of the International Federation of Clinical Neurophysiologists (IFCN). The duration of a single EEG recordings lasted at least 30 min. To localize equivalent dipole sources of pathological activity we used the program ‘BrainLoc 6.0’, (Russia). In 19 patients EEG was recorded in dynamics from 2 to 8 times.Results: all patients showed EEG changes of varying severity, which can be divided into three groups (according to the severity of changes in the EEG: moderate, severe and rough). In the group of patients with gross changes in EEG can be identified 4 variants: the first variant — absence of the alpha rhythm and the dominance of slow-wave fluctuations of the frequency spectrum; variant II — continuous generalized paroxysmal activity; variant III — phenomenon of ‘burst-suppression’; variant IV — a marked decrease in the amplitude of electrical activity of the brain to the level of 2–4 microvolt.Conclusions: based on the dynamics of the EEG pattern in patients after cardiac arrest, it is possible to assume with a certain degree of probability the level of violations in the basic mechanisms of the brain.


Sign in / Sign up

Export Citation Format

Share Document